PEEK versus Silicon Interspinous Spacer for Reduction of Supradjacent Segment Degeneration following Decompression and Short-Segment Instrumentation for Degenerative Lumbar Spinal Stenosis

Panagiotis Korovessis, Vasileios Syrimpeis, Vasileios Tsekouras, Konstantinos Vardakastanis, Peter Fennema, Panagiotis Korovessis, Vasileios Syrimpeis, Vasileios Tsekouras, Konstantinos Vardakastanis, Peter Fennema

Abstract

Purpose: A retrospective study that aims to report Adjacent Segment Degeneration (ASD) incidence and spinopelvic balance in short lumbosacral instrumentation for degenerative lumbar spinal stenosis. Although ASD is a common complication following lumbar fusion, the effect of an interspinous spacer (IS) in the supradjacent segment in short lumbosacral instrumented fusion and its interaction with spinopelvic balance has not been studied adequately.

Methods: From 55 consecutive age-, diagnosis-, and gender-matched patients aged 60±11 years, 17 (Group R) received PEEK IS; 18 (Group S) received Silicon IS compared with 20 controls (Group C) without receiving any IS. The functional outcome was evaluated with VAS and ODI. Spinopelvic balance was evaluated using SVA, T12-S1 LL, SS, PT, PI, and supradjacent segment disc heights. All spines were preoperatively balanced (SVA<40 mm).

Results: The follow-up averaged out to 56±11 months. VAS and ODI scores improved postoperatively in all 3 groups. SS and anterior disc height in the supradjacent free segment increased postoperatively compensatory to spinal alterations. Although 6, 4, and 5 patients from Groups R, S, and C, respectively, showed radiological progression of the preoperative degeneration grade in the supradjacent disc, only 2, 1, and 2 patients in Groups R, S, and C, respectively, developed symptomatic ASD in the 1st supradjacent segment solely. No additional surgery was required in any patient.

Conclusion: ASD incidence in the supradjacent segment following short lumbar fusion did not statistically significantly differ between PEEK and Silicon IS. There was a trend towards lower ASD incidence in Silicon IS. IS reduced ASD in both 1st and 2nd supradjacent segments. The authors speculate that soft stabilization provided by IS may be more advantageous for preventing ASD. This trial is registered with ClinicalTrials.govNCT03477955.

Figures

Figure 1
Figure 1
The radiological parameters PI, SS, PT, LL (T12-S1), SVA, and SL.
Figure 2
Figure 2
Anterior disc height ratio (ADHr) and posterior disc height ratio (PDHr).
Figure 3
Figure 3
MRI images of the Modified Grading System for Lumbar Disc Degeneration. This material is used after author's permission [17].
Figure 4
Figure 4
The second-generation Wallis interspinous spacer.
Figure 5
Figure 5
The DIAM interspinous spacer.

References

    1. Rajaee S. S., Bae H. W., Kanim L. E. A., Delamarter R. B. Spinal fusion in the United States: analysis of trends from 1998 to 2008. The Spine Journal. 2012;37(1):67–76. doi: 10.1097/brs.0b013e31820cccfb.
    1. Hu K., Feng D. Fusion Surgery for Lumbar Spinal Stenosis. The New England Journal of Medicine. 2016;375(6):597–601. doi: 10.1056/NEJMc1606502.
    1. Lee C.-H., Hyun S.-J., Kim K.-J., Jahng T.-A., Yoon S. H., Kim H.-J. The efficacy of lumbar hybrid stabilization using the DIAM to delay adjacent segment degeneration: an intervention comparison study with a minimum 2-year follow-up. Neurosurgery. 2013;73(2):224–232. doi: 10.1227/neu.0b013e31828e8ddc.
    1. Zhang C., Berven S. H., Fortin M., Weber M. H. Adjacent segment degeneration versus disease after lumbar spine fusion for degenerative pathology. Journal of Spinal Disorders & Techniques. 2016;29(1):21–29. doi: 10.1097/BSD.0000000000000328.
    1. Gillet P. The fate of the adjacent motion segments after lumbar fusion. Journal of Spinal Disorders & Techniques. 2003;16(4):338–345. doi: 10.1097/00024720-200308000-00005.
    1. Radcliff K. E., Kepler C. K., Jakoi A., et al. Adjacent segment disease in the lumbar spine following different treatment interventions. The Spine Journal. 2013;13(10):1339–1349. doi: 10.1016/j.spinee.2013.03.020.
    1. Cheh G., Bridwell K. H., Lenke L. G., et al. Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. The Spine Journal. 2007;32(20):2253–2257. doi: 10.1097/BRS.0b013e31814b2d8e.
    1. Helgeson M. D., Bevevino A. J., Hilibrand A. S. Update on the evidence for adjacent segment degeneration and disease. The Spine Journal. 2013;13(3):342–351. doi: 10.1016/j.spinee.2012.12.009.
    1. Kim Y. J., Bridwell K. H., Lenke L. G., Rhim S., Cheh G. An analysis of sagittal spinal alignment following long adult lumbar instrumentation and fusion to l5 or S1: Can we predict ideal lumbar lordosis? The Spine Journal. 2006;31(20):2343–2352. doi: 10.1097/01.brs.0000238970.67552.f5.
    1. Glassman S. D., Bridwell K., Dimar J. R., Horton W., Berven S., Schwab F. The impact of positive sagittal balance in adult spinal deformity. The Spine Journal. 2005;30(18):2024–2029. doi: 10.1097/01.brs.0000179086.30449.96.
    1. Takeda N., Kobayashi T., Atsuta Y., Matsuno T., Shirado O., Minami A. Changes in the sagittal spinal alignment of the elderly without vertebral fractures: A minimum 10-year longitudinal study. Journal of Orthopaedic Science. 2009;14(6):748–753. doi: 10.1007/s00776-009-1394-z.
    1. Dohzono S., Toyoda H., Matsumoto T., Suzuki A., Terai H., Nakamura H. The influence of preoperative spinal sagittal balance on clinical outcomes after microendoscopic laminotomy in patients with lumbar spinal canal stenosis. Journal of Neurosurgery: Spine. 2015;23(1):49–54. doi: 10.3171/2014.11.SPINE14452.
    1. Lafage V., Schwab F., Patel A., Hawkinson N., Farcy J.-P. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. The Spine Journal. 2009;34(17):E599–E606. doi: 10.1097/brs.0b013e3181aad219.
    1. Korovessis P., Repantis T., Zacharatos S., Zafiropoulos A. Does Wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion? European Spine Journal. 2009;18(6):830–840. doi: 10.1007/s00586-009-0976-y.
    1. Crawford R. J., Price R. I., Singer K. P. The effect of interspinous implant surgery on back surface shape and radiographic lumbar curvature. Clinical Biomechanics. 2009;24(6):467–472. doi: 10.1016/j.clinbiomech.2009.04.003.
    1. Le Huec J. C., Charosky S., Barrey C., Rigal J., Aunoble S. Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2011;20:699–703. doi: 10.1007/s00586-011-1938-8.
    1. Griffith J. F., Wang Y.-X. J., Antonio G. E., et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. The Spine Journal. 2007;32(24):E708–E712. doi: 10.1097/BRS.0b013e31815a59a0.
    1. Christensen F. B., Laursen M., Gelineck J., Eiskjær S. P., Thomsen K., Bünger C. E. Interobserver and intraobserver agreement of radiograph interpretation with and without pedicle screw implants: the need for a detailed classification system in posterolateral spinal fusion. The Spine Journal. 2001;26(5):538–544. doi: 10.1097/00007632-200103010-00018.
    1. Sénégas J., Vital J.-M., Pointillart V., Mangione P. Long-term actuarial survivorship analysis of an interspinous stabilization system. European Spine Journal. 2007;16(8):1279–1287. doi: 10.1007/s00586-007-0359-1.
    1. Floman Y., Millgram M. A., Smorgick Y., Rand N., Ashkenazi E. Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. Journal of Spinal Disorders & Techniques. 2007;20(5):337–341. doi: 10.1097/BSD.0b013e318030a81d.
    1. Schulte T. L., Leistra F., Bullmann V., et al. Disc height reduction in adjacent segments and clinical outcome 10 years after lumbar 360° fusion. European Spine Journal. 2007;16(12):2152–2158. doi: 10.1007/s00586-007-0515-7.
    1. Imagama S., Kawakami N., Matsubara Y., et al. Radiographic Adjacent Segment Degeneration at 5 Years after L4/5 Posterior Lumbar Interbody Fusion with Pedicle Screw Instrumentation: Evaluation by Computed Tomography and Annual Screening with Magnetic Resonance Imaging. Clinical Spine Surgery. 2016;29(9):E442–E451. doi: 10.1097/BSD.0b013e31828aec78.
    1. Anandjiwala J., Seo J. Y., Ha K. Y., et al Adjacent segment degeneration after instrumented posterolateral lumbar fusion: a prospective cohort study with a minimum five-year follow-up. The Spine Journal. 2011;20:1951–1960. doi: 10.1016/j.spinee.2011.08.439.
    1. Wang H., Ma L., Yang D., et al. Incidence and risk factors for the progression of proximal junctional kyphosis in degenerative lumbar scoliosis following long instrumented posterior spinal fusion. Medicine (United States) 2016;95(32) doi: 10.1097/MD.0000000000004443.e4443
    1. Lafage V., Gangnet N., Sénégas J., Lavaste F., Skalli W. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. The Spine Journal. 2007;32(16):1706–1713. doi: 10.1097/BRS.0b013e3180b9f429.
    1. Kanayama M., Hashimoto T., Shigenobu K., Togawa D., Oha F. A minimum 10-year follow-up of posterior dynamic stabilization using graf artificial ligament. The Spine Journal. 2007;32(18):1992–1996. doi: 10.1097/BRS.0b013e318133faae.
    1. Zhang Y., Shan J.-L., Liu X.-M., Li F., Guan K., Sun T.-S. Comparison of the dynesys dynamic stabilization system and posterior lumbar interbody fusion for lumbar degenerative disease. PLoS ONE. 2016;11(1) doi: 10.1371/journal.pone.0148071.0148071

Source: PubMed

3
S'abonner