Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data

Aditya Lia Ramadona, Lutfan Lazuardi, Yien Ling Hii, Åsa Holmner, Hari Kusnanto, Joacim Rocklöv, Aditya Lia Ramadona, Lutfan Lazuardi, Yien Ling Hii, Åsa Holmner, Hari Kusnanto, Joacim Rocklöv

Abstract

Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. The Number of Dengue Cases…
Fig 1. The Number of Dengue Cases in Yogyakarta Province, 2001–2010.
Fig 2. Time Series Graphs of Surveillance…
Fig 2. Time Series Graphs of Surveillance and Meteorological Data.
Fig 3. Association between Meteorological Variables and…
Fig 3. Association between Meteorological Variables and Dengue over Lag 0–3.
Solid lines represent relative risks of dengue cases and dotted lines depict the upper and lower limits of 95% confidence intervals.
Fig 4. Relationship between Autoregressive Lags and…
Fig 4. Relationship between Autoregressive Lags and Dengue Counts.
Upper panel shows (a) relative risks of dengue cases as functions of dengue surveillance at 2-month lag times. Lower panel shows (b) the relation between case intensity and dengue risk categories at all lag months; and (c) the risk in each future month following an increase of 5 dengue cases in a specific month.
Fig 5. Monthly Observed and Predicted Dengue…
Fig 5. Monthly Observed and Predicted Dengue Cases from 2001–2010.
Black line represents observed dengue cases and red line represents predicted cases. The vertical axis shows dengue cases and the horizontal axis denotes time in month from January 2001 to December 2010.
Fig 6. Residual Diagnosis.
Fig 6. Residual Diagnosis.
Upper panel shows (a) the residual histograms; and (b) the Q-Q plot for deviance residuals. Lower panel shows (c) the partial ACF plot; and (d) the relationship between reported and predicted cases.
Fig 7. Predicted Dengue Cases Versus Reported…
Fig 7. Predicted Dengue Cases Versus Reported Dengue Cases in 2001–2013.
Monthly predicted dengue cases compared with reported cases during January 2001 to December 2013. Black line represents observed dengue cases, grey line represents the epidemic threshold, red line represents predicted cases using training dataset, and blue line represents predicted cases using the external validation dataset not used for model fitting.

References

    1. World Health Organization. World health statistics 2013 [Internet]. Geneva: World Health Organization; 2013. [cited 2015 Jan 1]. Available from:
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. 10.1038/nature12060
    1. Stahl H- C, Butenschoen VM, Tran HT, Gozzer E, Skewes R, Mahendradhata Y, et al. Cost of dengue outbreaks: literature review and country case studies. BMC Public Health. 2013;13(1):1048.
    1. Azad S, Lio P. Emerging trends of malaria-dengue geographical coupling in the Southeast Asia region. J Vector Borne Dis. 2014;51(3):165–71.
    1. Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7(2):e2055 10.1371/journal.pntd.0002055
    1. Karyanti MR, Uiterwaal CS, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, et al. The changing incidence of Dengue Haemorrhagic Fever in Indonesia: a 45-year registry-based analysis. BMC Infect Dis. 2014;14(1):412.
    1. Aiken SR, Leigh CH. Dengue haemorrhagic fever in South-east Asia. Trans Inst Br Geogr. 1978;3(4):476–97.
    1. Dirjen Pengendalian Penyakit dan Penyehatan Lingkungan; Miko T, Kusminarti S, Karyanti MR, Sugiharti S, Sihombing B, Riyanti F, et al. Modul Pengendalian Demam Berdarah Dengue. Handoko D, Prasetyowati EB, Hartoyo S, editors. Jakarta: Kementerian Kesehatan Republik Indonesia; 2011. Indonesian.
    1. World Health Organization. Comprehensive guideline for prevention and control of Dengue and Dengue Haemorrhagic Fever Revised and expanded edition. New Delhi: World Health Organization, Regional Office for South-East Asia; 2011.
    1. Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. Biomed Res Int. 2013;2013:690835 10.1155/2013/690835
    1. Simmons CP, Farrar JJ, Chau N van V, Wills B. Dengue: current concepts. N Engl J Med. 2012;366:1423–32. 10.1056/NEJMra1110265
    1. Perkins TA, Reiner RC, Rodriguez-Barraquer I, Smith DL, Scott TW, Cummings DAT. A review of transmission models of dengue: A quantitative and qualitative analysis of model features In: Gubler DJ, Ooi EE, Vasudevan S, Farrar J, editors. Dengue and Dengue Hemorrhagic Fever. 2nd ed. CAB International; 2014. p. 99–114.
    1. OhAinle M, Harris E. Dengue pathogenesis: Viral factors. dengue and dengue hemorrhagic fever In: Gubler DJ, Ooi EE, Vasudevan S, Farrar J, editors. Dengue and Dengue Hemorrhagic Fever. 2nd ed. CAB International; 2014. p. 229–48.
    1. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface. 2013;10(86):20130414 10.1098/rsif.2013.0414
    1. OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborio S, et al. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med. 2011;3(114):114ra128–114ra128. 10.1126/scitranslmed.3003084
    1. Dieng H, Saifur RGM, Ahmad AH, Che Salmah MR, Aziz AT, Satho T, et al. Unusual developing sites of dengue vectors and potential epidemiological implications. Asian Pac J Trop Biomed. Asian Pacific Tropical Biomedical Magazine; 2012;2(3):228–32.
    1. Chan M, Johansson MA. The incubation periods of dengue viruses. PLoS ONE. 2012;7(11):e50972 10.1371/journal.pone.0050972
    1. Wongkoon S, Jaroensutasinee M, Jaroensutasinee K. Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. Indian J Med Res. 2013;138(3):347–53.
    1. Jeelani S, Sabesan S. Aedes vector population dynamics and occurrence of dengue fever in relation to climate variables in Puducherry, South India. Int J Curr Microbiol Appl Sci. 2013;2(12):313–22.
    1. Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg. 2013;88(4):689–97. 10.4269/ajtmh.12-0488
    1. Promprou S, Jaroensutasinee M, Jaroensutasinee K. Climatic factors affecting Dengue Haemorrhagic Fever incidence in Southern Thailand. Dengue Bull. 2005;29.
    1. Banu S, Hu W, Guo Y, Hurst C, Tong S. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ Int. Elsevier Ltd; 2014;63:137–42. 10.1016/j.envint.2013.11.002
    1. Hii YL, Rocklöv J, Ng N, Tang CS, Pang FY, Sauerborn R. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action. 2009;2(1):1–9.
    1. Wiwanitkit V. Lessons learned from previous dengue outbreaks. Asian Pacific J Trop Dis. 2014;4(1):67–70.
    1. Juffrie M, Focks DA. Early warning system (EWS) for dengue in Indonesia and Thailand. Berkala Ilmu Kedokteran. 2009;41:134–42.
    1. Indriani C, Fuad A, Kusnanto H. Spatial-temporal pattern comparison between Chikungunya outbreak and Dengue Hemmorhagis Fever incidence at Kota Yogyakarta 2008. Ber Kedokt Masy. 2011;27(1):41–50. Indonesian.
    1. Hii YL, Rocklöv J, Wall S, Ng LC, Tang CS, Ng N. Optimal lead time for dengue forecast. PLoS Negl Trop Dis. 2012;6(10):e1848 10.1371/journal.pntd.0001848
    1. Badan Lingkungan Hidup. Status Lingkungan Hidup Daerah Tahun 2012. Yogyakarta: Pemerintah Kota Yogyakarta; 2012. Indonesian.
    1. Salje H, Lessler J, Endy TP, Curriero FC, Gibbons R V, Nisalak A, et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc Natl Acad Sci. 2012;109(24):9535–8. 10.1073/pnas.1120621109
    1. Gasparrini A. Distributed lag linear and non-linear models in R: the package DLNM. J Stat Softw. 2011;43(8):1–20.
    1. R Core Team. R: A language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing; 2015.
    1. Wood SN. Generalized Additive Models: An introduction with R. Chapman and Hall/CRC.; 2006.
    1. Cummings DAT, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, et al. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature. 2004;427(6972):344–7.
    1. Johansson MA, Cummings DAT, Glass GE. Multiyear climate variability and dengue—El Niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS medicine. 2009;6(11): e1000168 10.1371/journal.pmed.1000168
    1. IRI. Emerging El Nino Conditions: Notes for the Global Health Community [Internet]. New York: Climate Information for Public Health Action, International Research Institute for Climate and Society; 2014. [cited 2015 Dec 10]. Available from: .
    1. Arcari P, Tapper N, Pfueller S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr. 2007;28(3):251–72.
    1. Wongkoon S, Jaroensutasinee M, Jaroensutasinee K. Weather factors influencing the occurrence of dengue fever in Nakhon Si Thammarat, Thailand. Trop Biomed. 2013;30(4):631–41.
    1. Anastuti RA. Implementasi program pengendalian Demam Berdarah Dengue (DBD) di Kelurahan Sorosutan dan Kelurahan Semaki Kota Yogyakarta [dissertation]. Sleman: Universitas Gadjah Mada; 2013. Indonesian.
    1. Widiarti, Heriyanto B, Boewono DT, Widyastuti U, Mujiono Lasmiati, et al. Peta resistensi vektor Demam Berdarah Dengue Aedes aegypti terhadap insektisida kelompok Organofosfat, Karbamat dan Pyrethroid di Provinsi Jawa tengah dan Daerah Istimewa Yogyakarta. Bul Penelit Kesehat. 2011;39(4):176–89. Indonesian.

Source: PubMed

3
S'abonner