Tolvaptan therapy of Chinese cirrhotic patients with ascites after insufficient diuretic routine medication responses: a phase III clinical trial

Jieting Tang, Yongfeng Wang, Tao Han, Qing Mao, Jun Cheng, Huiguo Ding, Jia Shang, Qin Zhang, Junqi Niu, Feng Ji, Chengwei Chen, Jidong Jia, Xiangjun Jiang, Nonghua Lv, Yueqiu Gao, Zhenghua Wang, Zhong Wei, Yingxuan Chen, Minde Zeng, Yimin Mao, Jieting Tang, Yongfeng Wang, Tao Han, Qing Mao, Jun Cheng, Huiguo Ding, Jia Shang, Qin Zhang, Junqi Niu, Feng Ji, Chengwei Chen, Jidong Jia, Xiangjun Jiang, Nonghua Lv, Yueqiu Gao, Zhenghua Wang, Zhong Wei, Yingxuan Chen, Minde Zeng, Yimin Mao

Abstract

Background: To determine the safety and efficacy of different doses of tolvaptan for treating Chinese cirrhotic patients with or without hyponatraemia who still had ascites after routine therapy with diuretics.

Methods: In the present placebo-controlled, randomized, double-blinded, multicentre clinical trial, patients with cirrhotic ascites who failed to adequately respond to a combination of an aldosterone antagonist plus an orally administered loop diuretic were randomly placed at a 4:2:1 ratio into 3 groups [the 15 mg/day tolvaptan group (N = 301), 7.5 mg/day tolvaptan group (N = 153) and placebo group (N = 76)] for 7 days of treatment. The effects and safety were evaluated on days 4 and 7. A change in body weight from baseline on day 7 of treatment was the primary endpoint.

Results: The administration of 7.5 or 15 mg/day tolvaptan significantly decreased body weight from baseline on day 7 of treatment compared to that with placebo treatment (P = 0.026; P = 0.001). For the secondary endpoints, changes in abdominal circumference from baseline and improvements in ascites were markedly different in the treatment groups and the placebo group on day 7 (P7.5 = 0.05, P15.0 = 0.002 and P7.5 = 0.037, P15.0 = 0.003), but there was no difference between the 7.5 mg/day and 15 mg/day dosage groups. The 24-h cumulative urine volume was higher in the 7.5 mg/day and 15 mg/day tolvaptan groups than the placebo group (P = 0.002, P < 0.001) and was greater in the 15 mg/day tolvaptan group than the 7.5 mg/day tolvaptan group (P = 0.004). Sodium serum concentrations were higher in patients with hyponatraemia after tolvaptan treatment, with no significant difference between the two dosage groups. The incidence of serious adverse drug reactions was not different between the groups (P = 0.543).

Conclusions: Tolvaptan treatment at 7.5 mg per day might be a good therapeutic choice for Chinese cirrhotic patients with ascites who did not achieve satisfactory clinical responses to previous treatment regimens with combination therapy with an aldosterone antagonist and an orally administered loop diuretic.

Trial registration: NCT01349348. Retrospectively registered May 2011.

Keywords: Ascites; Cirrhotic patients; Liver cirrhosis; Tolvaptan.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Change in body weight from baseline at each time point in the placebo, 7.5 mg and 15 mg tolvaptan groups. Data are expressed as the mean ± standard deviation (SD). The comparison between the tolvaptan and placebo groups was performed using ANOVA. End of treatment (EOT)
Fig. 2
Fig. 2
Change in the water balance from baseline at each time point in the placebo, 7.5 mg and 15 mg tolvaptan groups. Data are expressed as the mean ± SD

References

    1. Gines P, Quintero E, Arroyo V, Teres J, Bruguera M, Rimola A, et al. Compensated cirrhosis: natural history and prognostic factors. Hepatology. 1987;7(1):122–128.
    1. European Association for the Study of the Liver EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69(2):406–460.
    1. Hoorn EJ, Ellison DH. Diuretic Resistance. Am J Kidney Dis. 2017;69(1):136–142.
    1. Santos J, Planas R, Pardo A, Durández R, Cabré E, Morillas RM, et al. Spironolactone alone or in combination with furosemide in the treatment of moderate ascites in nonazotemic cirrhosis. A randomized comparative study of efficacy and safety. J Hepatol. 2003;39(2):187–192.
    1. Otsuka America Pharmaceutical, Inc. Tolvaptan (SamscaTM) Prescribing information 2012. .
    1. Otsuka Pharmaceutical Europe Ltd. Tolvaptan (JinarcTM) Summary of product Characteristics 2019. .
    1. Otsuka America Pharmaceutical, Inc. Tolvaptan (JynarqueTM) Prescribing information 2019. .
    1. Otsuka Pharmaceutical Co., Ltd. Tolvaptan (Samsca) Summary of investigation results. 2018. .
    1. Fukui H, Saito H, Ueno Y, Uto H, Obara K, Sakaida I, et al. Evidence-based clinical practice guidelines for liver cirrhosis 2015. J Gastroenterol. 2016;51(7):629–650.
    1. Liu Sde S-L, Yao T, Diehl AM, Zern MA. Vitamin E therapy of acute CC14-induced hepatic injury in mice is associated with inhibition of nuclear factor kappa B binding. Hepatology. 1995;22:7.
    1. Wang YF, Tang JT, Han T, Ding HG, Ye WJ, Wang MR, et al. Tolvaptan in Chinese cirrhotic patients with ascites: A randomized, placebo-controlled phase 2 trial. J Dig Dis. 2018;19(3):144–154.
    1. Okita K, Kawazoe S, Hasebe C, Kajimura K, Kaneko A, Okada M, et al. Dose-finding trial of tolvaptan in liver cirrhosis patients with hepatic edema: A randomized, double-blind, placebo-controlled trial. Hepatol Res. 2014;44(1):83–91.
    1. Sakaida I, Okita K. Correlation between changes in bodyweight and changes in ascites volume in liver cirrhosis patients with hepatic edema in short-term diuretic therapy. Hepatol Res. 2014;44(7):735–739.
    1. Sakaida I. Tolvaptan for the treatment of liver cirrhosis oedema. Expert Rev Gastroenterol Hepatol. 2014;8(5):461–470.
    1. An J, Cai D, Chen G, Chen H, Chen X, Ding H, et al. Chinese guidelines on the management of ascites and its related complications in cirrhosis. Hepatol Int. 2019;13(1):1–21.
    1. Sakaida I, Yanase M, Kobayashi Y, Yasutake T, Okada M, Okita K, et al. The pharmacokinetics and pharmacodynamics of tolvaptan in patients with liver cirrhosis with insufficient response to conventional diuretics: a multicentre, double-blind, parallel-group, phase III study. J Int Med Res. 2012;40(6):2381–2393.
    1. Kitsios GD, Mascari P, Ettunsi R, Gray AW. Co-administration of furosemide with albumin for overcoming diuretic resistance in patients with hypoalbuminemia: a meta-analysis. J Crit Care. 2014;29(2):253–259.
    1. Sakaida I, Nakajima K, Okita K, Hori M, Izumi T, Sakurai M, et al. Can serum albumin level affect the pharmacological action of tolvaptan in patients with liver cirrhosis? A post hoc analysis of previous clinical trials in Japan. J Gastroenterol. 2015;50(10):1047–1053.
    1. Okabe T, Yakushiji T, Igawa W, Ono M, Kido T, Ebara S, et al. The efficacy of tolvaptan in congestive heart failure patients with and without hypoalbuminemia: a pilot study. Cardiovasc Ther. 2015;33(5):275–281.
    1. Wang S, Zhang X, Han T, Xie W, Li Y, Ma H, et al. Tolvaptan treatment improves survival of cirrhotic patients with ascites and hyponatremia. BMC Gastroenterol. 2018;18(1):137.
    1. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–2112.
    1. Muto S, Kawano H, Higashihara E, Narita I, Ubara Y, Matsuzaki T, et al. The effect of tolvaptan on autosomal dominant polycystic kidney disease patients: a subgroup analysis of the Japanese patient subset from TEMPO 3:4 trial. Clin Exp Nephrol. 2015;19(5):867–877.
    1. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–2418.
    1. FDA Drug Safety Communication: FDA limits duration and usage of Samsca (tolvaptan) due to possible liver injury leading to organ transplant or death 2013. .
    1. Watkins PB, Lewis JH, Kaplowitz N, Alpers DH, Blais JD, Smotzer DM, et al. Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf. 2015;38(11):1103–1113.
    1. Bellos I, Kontzoglou K, Psyrri A, Pergialiotis V. Tolvaptan response improves overall survival in patients with refractory ascites: a meta-analysis. Dig Dis. 2020;38(4):320–328.
    1. Atsukawa M, Tsubota A, Takaguchi K, Toyoda H, Iwasa M, Ikegami T, et al. Analysis of factors associated with the prognosis of cirrhotic patients who were treated with tolvaptan for hepatic edema. J Gastroenterol Hepatol. 2020;35(7):1229–1237.
    1. Nakanishi H, Kurosaki M, Hosokawa T, Takahashi Y, Itakura J, Suzuki S, et al. Urinary excretion of the water channel aquaporin 2 correlated with the pharmacological effect of tolvaptan in cirrhotic patients with ascites. J Gastroenterol. 2016;51(6):620–627.
    1. Miyaaki H, Nakamura Y, Ichikawa T, Taura N, Miuma S, Shibata H, et al. Predictive value of the efficacy of tolvaptan in liver cirrhosis patients using free water clearance. Biomed Rep. 2015;3(6):884–886.
    1. Uojima H, Kinbara T, Hidaka H, Sung JH, Ichida M, Tokoro S, et al. Close correlation between urinary sodium excretion and response to tolvaptan in liver cirrhosis patients with ascites. Hepatol Res. 2017;47(3):E14–e21.
    1. Nakagawa A, Atsukawa M, Tsubota A, Kondo C, Okubo T, Arai T, et al. Usefulness of portal vein pressure for predicting the effects of tolvaptan in cirrhotic patients. World J Gastroenterol. 2016;22(21):5104–5113.
    1. Kogiso T, Yamamoto K, Kobayashi M, Ikarashi Y, Kodama K, Taniai M, et al. Response to tolvaptan and its effect on prognosis in cirrhotic patients with ascites. Hepatol Res. 2017;47(9):835–844.
    1. Iwamoto T, Maeda M, Hisanaga T, Saeki I, Fujisawa K, Matsumoto T, et al. Predictors of the effect of tolvaptan on the prognosis of cirrhosis. Intern Med. 2016;55(20):2911–2916.
    1. Yamada T, Ohki T, Hayata Y, Karasawa Y, Kawamura S, Ito D, et al. Potential effectiveness of tolvaptan to improve ascites unresponsive to standard diuretics and overall survival in patients with decompensated liver cirrhosis. Clin Drug Investig. 2016;36(10):829–835.
    1. Chishina H, Hagiwara S, Nishida N, Ueshima K, Sakurai T, Ida H, et al. Clinical factors predicting the effect of tolvaptan for refractory ascites in patients with decompensated liver cirrhosis. Dig Dis. 2016;34(6):659–664.
    1. Sakaida I, Terai S, Nakajima K, Shibasaki Y, Tachikawa S, Tsubouchi H. Predictive factors of the pharmacological action of tolvaptan in patients with liver cirrhosis: a post hoc analysis. J Gastroenterol. 2017;52(2):229–236.
    1. Kawaratani H, Fukui H, Moriya K, Noguchi R, Namisaki T, Uejima M, et al. Predictive parameter of tolvaptan effectiveness in cirrhotic ascites. Hepatol Res. 2017;47(9):854–861.
    1. Atsukawa M, Tsubota A, Kato K, Abe H, Shimada N, Asano T, et al. Analysis of factors predicting the response to tolvaptan in patients with liver cirrhosis and hepatic edema. J Gastroenterol Hepatol. 2018;33(6):1256–1263.
    1. Sakaida I, Terai S, Kurosaki M, Okada M, Hirano T, Fukuta Y. Real-world effectiveness and safety of tolvaptan in liver cirrhosis patients with hepatic edema: results from a post-marketing surveillance study (START study) J Gastroenterol. 2020;55(8):800–810.

Source: PubMed

3
S'abonner