Multi-System Deconditioning in 3-Day Dry Immersion without Daily Raise

Steven De Abreu, Liubov Amirova, Ronan Murphy, Robert Wallace, Laura Twomey, Guillemette Gauquelin-Koch, Veronique Raverot, Françoise Larcher, Marc-Antoine Custaud, Nastassia Navasiolava, Steven De Abreu, Liubov Amirova, Ronan Murphy, Robert Wallace, Laura Twomey, Guillemette Gauquelin-Koch, Veronique Raverot, Françoise Larcher, Marc-Antoine Custaud, Nastassia Navasiolava

Abstract

Dry immersion (DI) is a Russian-developed, ground-based model to study the physiological effects of microgravity. It accurately reproduces environmental conditions of weightlessness, such as enhanced physical inactivity, suppression of hydrostatic pressure and supportlessness. We aimed to study the integrative physiological responses to a 3-day strict DI protocol in 12 healthy men, and to assess the extent of multi-system deconditioning. We recorded general clinical data, biological data and evaluated body fluid changes. Cardiovascular deconditioning was evaluated using orthostatic tolerance tests (Lower Body Negative Pressure + tilt and progressive tilt). Metabolic state was tested with oral glucose tolerance test. Muscular deconditioning was assessed via muscle tone measurement. Results: Orthostatic tolerance time dropped from 27 ± 1 to 9 ± 2 min after DI. Significant impairment in glucose tolerance was observed. Net insulin response increased by 72 ± 23% on the third day of DI compared to baseline. Global leg muscle tone was approximately 10% reduced under immersion. Day-night changes in temperature, heart rate and blood pressure were preserved on the third day of DI. Day-night variations of urinary K+ diminished, beginning at the second day of immersion, while 24-h K+ excretion remained stable throughout. Urinary cortisol and melatonin metabolite increased with DI, although within normal limits. A positive correlation was observed between lumbar pain intensity, estimated on the second day of DI, and mean 24-h urinary cortisol under DI. In conclusion, DI represents an accurate and rapid model of gravitational deconditioning. The extent of glucose tolerance impairment may be linked to constant enhanced muscle inactivity. Muscle tone reduction may reflect the reaction of postural muscles to withdrawal of support. Relatively modest increases in cortisol suggest that DI induces a moderate stress effect. In prospect, this advanced ground-based model is extremely suited to test countermeasures for microgravity-induced deconditioning and physical inactivity-related pathologies.

Keywords: cardiovascular deconditioning; day-night variations; glucose intolerance; kaliuresis; modeled weightlessness; muscle tone; physical inactivity; supportlessness.

Figures

Figure 1
Figure 1
Global protocol timeline. Thick arrows stand for blood sampling. OGTT, Oral Glucose Tolerance Test; LBNP, Lower Body Negative Pressure; B-3, B-2, B-1, days before dry immersion; DI1, DI2, DI3, first, second and third days of dry immersion. R0, R+1, R+2–days after dry immersion.
Figure 2
Figure 2
Morning and evening heart rate (A), body temperature (B), systolic (C), and diastolic (D) blood pressure before DI and on the 3rd day of DI. Data are mean ± SEM. No significant difference on DI3 vs. B-1. #p ≤ 0.05 vs. Morning.
Figure 3
Figure 3
Number of finishers for different stages of LBNP-tilt test before and immediately after 3-day DI.
Figure 4
Figure 4
Cardiovascular changes during orthostatic tests for systolic (A) and diastolic (B) blood pressure and heart rate (C). Data are mean ± SEM. *p ≤ 0.05 vs. Supine; #p ≤ 0.05 vs. Before.
Figure 5
Figure 5
Cardiovascular changes during orthostatic tests for total peripheral resistance (A), stroke volume (B), spontaneous baroreflex sensitivity (C) and sympathetic index (D). Data are mean ± SEM. *p ≤ 0.05 vs. Supine; #p ≤ 0.05 vs. Before.
Figure 6
Figure 6
The effect of 48-h dry immersion on the glucose (A) and insulin (B) response to 75-g oral glucose tolerance test in 12 healthy subjects. Data are mean ± SEM. *p ≤ 0.05 vs. B-1.
Figure 7
Figure 7
Percent change in muscle tone of leg muscles (A), superficial neck and upper trunk muscles (B) and deep back muscles (C) 6 h following the onset (D1), on day 3 of immersion (D3), in recovery period on R0 (6 h following the end of DI) and on R+1. Data are mean ± SEM. *p ≤ 0.05 vs. B-1.
Figure 8
Figure 8
Day-night difference in renal excretion for sodium (A) and potassium (B). *p ≤ 0.05 vs. baseline.
Figure 9
Figure 9
12-h renal excretion for cortisol (A) and melatonin metabolite (B). *p ≤ 0.05 vs. baseline.

References

    1. Arbeille P., Avan P., Treffel L., Zuj K., Normand H., Denise P. (2017). Jugular and portal vein volume, middle cerebral vein velocity, and intracranial pressure in dry immersion. Aerosp. Med. Hum. Perform. 88, 457–462. 10.3357/AMHP.4762.2017
    1. Bergouignan A., Momken I., Schoeller D. A., Normand S., Zahariev A., Lescure B., et al. . (2010). Regulation of energy balance during long-term physical inactivity induced by bed rest with and without exercise training. J. Clin. Endocrinol. Metab. 95, 1045–1053. 10.1210/jc.2009-1005
    1. Blanc S., Normand S., Pachiaudi C., Fortrat J. O., Laville M., Gharib C. (2000). Fuel homeostasis during physical inactivity induced by bed rest. J. Clin. Endocrinol. Metab. 85, 2223–2233. 10.1210/jc.85.6.2223
    1. Buckey J. C., Jr., Lane L. D., Levine B. D., Watenpaugh D. E., Wright S. J., Moore W. E., et al. . (1996). Orthostatic intolerance after spaceflight. J. Appl. Physiol. (1985) 81, 7–18.
    1. Clement G., Pavy-Le Traon A. (2004). Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur. J. Appl. Physiol. 92, 235–248. 10.1007/s00421-004-1118-1
    1. Convertino V. A. (1996a). Clinical aspects of the control of plasma volume at microgravity and during return to one gravity. Med. Sci. Sports Exerc. 28, 45–52.
    1. Convertino V. A. (1996b). Exercise and adaptation to microgravity environment, in Handbook of Physiology, Environmental Physiology, eds Fregly M. J., Blatteis C. M. (New York, NY: Oxford University Press; ), 815–843.
    1. Convertino V. A. (1999). G-factor as a tool in basic research: mechanisms of orthostatic tolerance. J. Gravit. Physiol. 6, 73–76.
    1. Convertino V. A. (2002). Mechanisms of microgravity induced orthostatic intolerance: implications for effective countermeasures. J. Gravit. Physiol. 9, 1–13.
    1. Coupé M., Fortrat J. O., Larina I., Gauquelin-Koch G., Gharib C., Custaud M. A. (2009). Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir. Physiol. Neurobiol. 169, S10–S12. 10.1016/j.resp.2009.04.009
    1. Coupé M., Tomilovskaya E., Larcher F., Diquet B., Pastushkova L., Kozlovskaya I., et al. (2013). Body fluid changes, cardiovascular deconditioning and metabolic impairment are reversed 24 hours after a 5-day dry immersion. O. J. Neph. 3, 13–24. 10.4236/ojneph.2013.31004
    1. de Groot P. C., Bleeker M. W., Hopman M. T. (2006). Magnitude and time course of arterial vascular adaptations to inactivity in humans. Exerc. Sport Sci. Rev. 34, 65–71. 10.1249/00003677-200604000-00005
    1. Demangel R., Treffel L., Py G., Brioche T., Pagano A. F., Bareille M. P., et al. . (2017). Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model. J. Physiol. 595, 4301–4315. 10.1113/JP273895
    1. Dirks M. L., Wall B. T., van de Valk B., Holloway T. M., Holloway G. P., Chabowski A., et al. . (2016). One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65, 2862–2875. 10.2337/db15-1661
    1. Engelke K. A., Doerr D. F., Crandall C. G., Convertino V. A. (1996). Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity. Am. J. Physiol. 271, R837–R847.
    1. Fritsch-Yelle J. M., Charles J. B., Jones M. M. (1996). Microgravity decreases heart rate and arterial pressure in humans. J. Appl. Physiol. 80, 910–914.
    1. Fuller C. A., Hoban-Higgins T. M., Griffin D. W., Murakami D. M. (1994). Influence of gravity on the circadian timing system. Adv. Space Res. 14, 399–408. 10.1016/0273-1177(94)90431-6
    1. Gogolev K. I., Aleksandrova E. A., Shul'zhenko E. B. (1980). Comparative assessment of changes during antiorthostatic hypokinesia and immersion in man. Hum. Physiol. 6, 392–396.
    1. Greenleaf J. E. (1984). Physiological responses to prolonged bed rest and fluid immersion in humans. J. Appl. Physiol. 57, 619–633.
    1. Grigor'ev A. I., Kozlovskaia I. B., Shenkman B. S. (2004). The role of support afferents in organisation of the tonic muscle system. Ross. Fiziol. Zh. Im. I. M. Sechenova. 90, 508–521.
    1. Gumz M. L., Rabinowitz L. (2013). Role of circadian rhythms in potassium homeostasis. Semin. Nephrol. 33, 229–236. 10.1016/j.semnephrol.2013.04.003
    1. Gumz M. L., Rabinowitz L., Wingo C. S. (2015). An integrated view of potassium homeostasis. N. Engl. J. Med. 373, 60–72. 10.1056/NEJMra1313341
    1. Guo J. H., Qu W. M., Chen S. G., Chen X. P., Lv K., Huang Z. L., et al. . (2014). Keeping the right time in space: importance of circadian clock and sleep for physiology and performance of astronauts. Mil. Med. Res. 1:23. 10.1186/2054-9369-1-23
    1. Hamburg N. M., McMackin C. J., Huang A. L., Shenouda S. M., Widlansky M. E., Schulz E., et al. . (2007). Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler. Thromb. Vasc. Biol. 27, 2650–2656. 10.1161/ATVBAHA.107.153288
    1. Heer M., Baecker N., Wnendt S., Fischer A., Biolo G., Frings-Meuthen P. (2014). How fast is recovery of impaired glucose tolerance after 21-day bed rest (NUC study) in healthy adults? ScientificWorldJournal 2014:803083. 10.1155/2014/803083
    1. Iarullin K. h., Kh Simonov L. G., Vtoryi S. A. (1987). Changes in regional and central hemodynamics during a 7-day immersion in water [in Russian, English summary]. Kosm. Biol. Aviakosm. Med. 21, 45–50.
    1. Iwase S., Sugiyama Y., Miwa C., Kamiya A., Mano T., Ohira Y., et al. . (2000). Effects of three days of dry immersion on muscle sympathetic nerve activity and arterial blood pressure in humans. J. Auton. Nerv. Syst. 79, 156–164. 10.1016/S0165-1838(99)00076-4
    1. Kiilerich K., Ringholm S., Biensø R. S., Fisher J. P., Iversen N., van Hall G., et al. (2011). Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest. J. Appl. Physiol. 111, 751–757. 10.1152/japplphysiol.00063.2011
    1. Kozlovskaia I. B. (2008). Fundamental and applied objectives of investigations in immersion [in Russian]. Aviakosm. Ekolog. Med. 42, 3–7.
    1. Leach Huntoon C. S., Grigoriev A. I., Natochin Y. U.V. (1998). Fluid and Electrolyte Regulation in Spaceflight. Science and Technology Series 94, in Am Astronaut. Society, San Diego.
    1. Liang X., Zhang L., Wan Y., Yu X., Guo Y., Chen X., et al. . (2012). Changes in the diurnal rhythms during a 45-day head-down bed rest. PLoS ONE 7:e47984. 10.1371/journal.pone.0047984
    1. Mano T. (2005). Autonomic neural functions in space. Curr. Pharm. Biotechnol. 6, 319–324. 10.2174/1389201054553743
    1. Millet C., Custaud M. A., Maillet A., Allevard A. M., Duvareille M., Gauquelin-Koch G., et al. . (2001). Endocrine responses to 7 days of head-down bed rest and orthostatic tests in men and women. Clin. Physiol. 21, 172–183. 10.1046/j.1365-2281.2001.00315.x
    1. Miwa C., Sugiyama Y., Iwase S., Mano T., Ohira Y., Grigoriev A., et al. . (1997). Effects of three days of dry immersion on heart rate and blood pressure variabilities during head-up tilting in humans. Environ. Med. 41, 135–137.
    1. Navasiolava N. M., Custaud M. A., Tomilovskaya E. S., Larina I. M., Mano T., Gauquelin-Koch G., et al. . (2011a). Long-term dry immersion: review and prospects. Eur. J. Appl. Physiol. 111, 1235–1260. 10.1007/s00421-010-1750-x
    1. Navasiolava N. M., de Germain V., Levrard T., Larina I. M., Kozlovskaya I. B., Diquet B., et al. . (2011b). Skin vascular resistance in the standing position increases significantly after 7 days of dry immersion. Auton. Neurosci. 160, 64–68. 10.1016/j.autneu.2010.10.003
    1. Navasiolava N. M., Pajot A., Gallois Y., Pastushkova L., Kulchitsky V. A., Gauquelin-Koch G., et al. . (2011c). NT-ProBNP levels, water and sodium homeostasis in healthy men: effects of 7 days of dry immersion. Eur. J. Appl. Physiol. 111, 2229–2237. 10.1007/s00421-011-1858-7
    1. Nicogossian A. E., Huntoon C. L., Pool S. L. (1993). Space Physiology and Medicine, 3rd Edn. Philadelphia, PA: Lea and Febiger.
    1. Panferova N. E. (1976). Cardiovascular system during hypokinesia of varying duration and intensity [in Russian, English summary]. Kosm. Biol. Aviakosm. Med. 10, 15–20.
    1. Pavy-Le Traon A., Heer M., Narici M. V., Rittweger J., Vernikos J. (2007). From space to earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur. J. Appl. Physiol. 101, 143–194. 10.1007/s00421-007-0474-z
    1. Pavy-Le Traon A., Louisy F., Vasseur-Clausen P., Güell A., Gharib C. (1999). Contributory factors to orthostatic intolerance after simulated weightlessness. Clin. Physiol. 19, 360–368. 10.1046/j.1365-2281.1999.00189.x
    1. Protheroe C. L., Ravensbergen H. R., Inskip J. A., Claydon V. E. (2013). Tilt testing with combined lower body negative pressure: a “gold standard” for measuring orthostatic tolerance. J. Vis. Exp. 73:e4315 10.3791/4315
    1. Schmidt W., Prommer N. (2005). The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur. J. Appl. Physiol. 95, 486–495. 10.1007/s00421-005-0050-3
    1. Shulzhenko E. B., Tigranyan R. A., Panfilov V. E., Bzhalava I. I. (1980). Physiological reactions during acute adaptation to reduced gravity. Life Sci. Space Res. 18, 175–179. 10.1016/B978-0-08-024436-5.50023-8
    1. Treffel L., Dmitrieva L., Gauquelin-Koch G., Custaud M. A., Blanc S., Gharib C., et al. . (2016a). Craniomandibular system and postural balance after 3-day dry immersion. PLoS ONE 11:e0150052. 10.1371/journal.pone.0150052
    1. Treffel L., Mkhitaryan K., Gellee S., Gauquelin-Koch G., Gharib C., Blanc S., et al. . (2016b). Intervertebral disc swelling demonstrated by 3D and water content magnetic resonance analyses after a 3-day dry immersion simulating microgravity. Front. Physiol. 7:605. 10.3389/fphys.2016.00605
    1. Vernikos J., Ludwig D. A., Ertl A. C., Wade C. E., Keil L., O'Hara D. (1996). Effect of standing or walking on physiological changes induced by head down bed rest: implications for spaceflight. Aviat. Space Environ. Med. 67, 1069–1079.
    1. Watenpaugh D. E. (2016). Analogs of microgravity: head-down tilt and water immersion. J. Appl. Physiol. 120, 904–914. 10.1152/japplphysiol.00986.2015
    1. Yuan M., Alameddine A., Coupé M., Navasiolava N. M., Li Y., Gauquelin-Koch G., et al. . (2015). Effect of Chinese herbal medicine on vascular functions during 60-day head-down bed rest. Eur. J. Appl. Physiol. 115, 1975–1983. 10.1007/s00421-015-3176-y
    1. Zhang L. F. (2001). Vascular adaptation to microgravity: what have we learned? J. Appl. Physiol. 91, 2415–2430.

Source: PubMed

3
S'abonner