Impacts of Simulated Weightlessness by Dry Immersion on Optic Nerve Sheath Diameter and Cerebral Autoregulation

Marc Kermorgant, Florian Leca, Nathalie Nasr, Marc-Antoine Custaud, Thomas Geeraerts, Marek Czosnyka, Dina N Arvanitis, Jean-Michel Senard, Anne Pavy-Le Traon, Marc Kermorgant, Florian Leca, Nathalie Nasr, Marc-Antoine Custaud, Thomas Geeraerts, Marek Czosnyka, Dina N Arvanitis, Jean-Michel Senard, Anne Pavy-Le Traon

Abstract

Dry immersion (DI) is used to simulate weightlessness. We investigated in healthy volunteers if DI induces changes in ONSD, as a surrogate marker of intracranial pressure (ICP) and how these changes could affect cerebral autoregulation (CA). Changes in ICP were indirectly measured by changes in optic nerve sheath diameter (ONSD). 12 healthy male volunteers underwent 3 days of DI. ONSD was indirectly assessed by ocular ultrasonography. Cerebral blood flow velocity (CBFV) of the middle cerebral artery was gauged using transcranial Doppler ultrasonography. CA was evaluated by two methods: (1) transfer function analysis was calculated to determine the relationship between mean CBFV and mean arterial blood pressure (ABP) and (2) correlation index Mxa between mean CBFV and mean ABP.ONSD increased significantly during the first day, the third day and the first day of recovery of DI (P < 0.001).DI induced a reduction in Mxa index (P < 0.001) and an elevation in phase shift in low frequency bandwidth (P < 0.05). After DI, Mxa and coherence were strongly correlated with ONSD (P < 0.05) but not before DI. These results indicate that 3 days of DI induces significant changes in ONSD most likely reflecting an increase in ICP. CA was improved but also negatively correlated with ONSD suggesting that a persistent elevation ICP favors poor CA recovery after simulated microgravity.

Keywords: cerebral autoregulation; dry immersion; intracranial pressure; optic nerve sheath diameter; transcranial Doppler.

Figures

Figure 1
Figure 1
Dry immersion experiment.
Figure 2
Figure 2
Changes in optic nerve sheath diameter after dry immersion. Changes in optic nerve sheath diameter (ONSD) before (BDC), the first day (DI 1), the third day (DI 3) and after (R+1) dry immersion in all subjects (A), “good recovery” group (B) and “poor recovery” group (C). Individuals points with the changing curves are represented. P < 0.05 vs. BDC; P < 0.01 vs. BDC; P < 0.001 vs. BDC.
Figure 3
Figure 3
(A–D) Mxa and coherence values plotted versus ONSD before (green circles) and after (red circles) dry immersion with linear regression (solid lines).

References

    1. Blaber A. P., Goswami N., Bondar R. L., Kassam M. S. (2011). Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight. Stroke 42, 1844–1850. 10.1161/STROKEAHA.110.610576
    1. Brady K., Joshi B., Zweifel C., Smielewski P., Czosnyka M., Easley R. B., et al. (2010).Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 41, 1951–1956. 10.1161/STROKEAHA.109.575159
    1. Charles J. B., Lathers C. M. (1991). Cardiovascular adaptation to spaceflight. J. Clin. Pharmacol. 31, 1010–1023.
    1. Claassen J. A., Meel-van den Abeelen A. S., Simpson D. M., Panerai R. B., International Cerebral Autoregulation Research Network (2016). Transfer function analysis of dynamic cerebral autoregulation: a white paper from the international cerebral autoregulation research network. J. Cereb. Blood Flow. Metab. 36, 665–680. 10.1177/0271678X15626425
    1. Cooke W. H., Pellegrini G. L., Kovalenko O. A. (2003). Dynamic cerebral autoregulation is preserved during acute head-down tilt. J. Appl. Physiol. 95, 1439–1445. 10.1152/japplphysiol.00524.2003
    1. Czosnyka M., Smielewski P., Kirkpatrick P., Menon D. K., Pickard J. D. (1996). Monitoring of cerebral autoregulation in head-injured patients. Stroke 27, 1829–1834. 10.1161/01.STR.27.10.1829
    1. Czosnyka M., Smielewski P., Piechnik S., Steiner L. A., Pickard J. D. (2001). Cerebral autoregulation following head injury. J. Neurosurg. 95, 756–763. 10.3171/jns.2001.95.5.0756
    1. Diehl R. R., Linden D., Lucke D., Berlit P. (1995). Phase relationship between cerebral blood flow velocity and blood pressure. a clinical test of autoregulation. Stroke 26, 1801–1804. 10.1161/01.STR.26.10.1801
    1. Dubost C., Le Gouez A., Zetlaoui P. J., Benhamou D., Mercier F. J., Geeraerts T. (2011). Increase in optic nerve sheath diameter induced by epidural blood patch: a preliminary report. Br. J. Anaesth. 107, 627–630. 10.1093/bja/aer186
    1. Geeraerts T., Dubost C. (2009). Theme: neurology–optic nerve sheath diameter measurement as a risk marker for significant intracranial hypertension. Biomark. Med. 3, 129–137. 10.2217/bmm.09.6
    1. Geeraerts T., Launey Y., Martin L., Pottecher J., Vigué B., Duranteau J., et al. . (2007). Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 33, 1704–1711. 10.1007/s00134-007-0797-6
    1. Geeraerts T., Newcombe V. F., Coles J. P., Abate M. G., Perkes I. E., Hutchinson P. J., et al. . (2008). Use of t2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit. Care 12, R114. 10.1186/cc7006
    1. Gevlich G. I., Grigor'eva L. S., Boiko M. I., Kozlovskaia I. B. (1983). Evaluation of skeletal muscle tonus by the method of recording transverse rigidity. Kosm. Biol. Aviakosm. Med. 17, 86–89.
    1. Heer M., Paloski W. H. (2006). Space motion sickness: incidence, etiology, and countermeasures. Auton. Neurosci. 129, 77–79. 10.1016/j.autneu.2006.07.014
    1. Iwasaki K., Levine B. D., Zhang R., Zuckerman J. H., Pawelczyk J. A., Diedrich A., et al. . (2007). Human cerebral autoregulation before, during and after spaceflight. J. Physiol. 579, 799–810. 10.1113/jphysiol.2006.119636
    1. Kramer L. A., Sargsyan A. E., Hasan K. M., Polk J. D., Hamilton D. R. (2012). Orbital and intracranial effects of microgravity: findings at 3-t mr imaging. Radiology 263, 819–827. 10.1148/radiol.12111986
    1. Lawley J. S., Petersen L. G., Howden E. J., Sarma S., Cornwell W. K., Zhang R., et al. . (2017). Effect of gravity and microgravity on intracranial pressure. J. Physiol. 595, 2115–2127. 10.1113/JP273557
    1. Leach C. S., Inners L. D., Charles J. B. (1991). Changes in total body water during spaceflight. J. Clin. Pharmacol. 31, 1001–1006. 10.1002/j.1552-4604.1991.tb03663.x
    1. Mader T. H., Gibson C. R., Pass A. F., Kramer L. A., Lee A. G., Fogarty J., et al. (2011). Optic disc edema, globe flattening, choroid folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophtalmology 118, 2058–2069. 10.1016/j.ophtha.2011.06.021
    1. Nasr N., Czosnyka M., Pavy-Le Traon A., Custaud M. A., Liu X., Varsos G. V., et al. . (2014). Baroreflex and cerebral autoregulation are inversely correlated. Circ. J. 78, 2460–2467. 10.1253/circj.CJ-14-0445
    1. Navasiolava N. M., Custaud M. A., Tomilovskaya E. S., Larina I. M., Mano T., Gauquelin-Koch G., et al. . (2011). Long-term dry immersion: review and prospects. Eur. J. Appl. Physiol. 111, 1235–1260. 10.1007/s00421-010-1750-x
    1. Nelson E. S., Mulugeta L., Myers J. G. (2014). Microgravity-induced fluid shift and ophthalmic changes. Life 4, 621–665. 10.3390/life4040621
    1. Ogawa Y., Iwasaki K., Aoki K., Saitoh T., Kato J., Ogawa S. (2009). Dynamic cerebral autoregulation after mild dehydration to simulate microgravity effects. Aviat. Space Environ. Med. 80, 443–447. 10.3357/ASEM.2449.2009
    1. Panerai R. B. (1998). Assessment of cerebral pressure autoregulation in humans–a review of measurement methods. Physiol. Meas. 19, 305–338.
    1. Pavy-Le Traon A., Costes-Salon M. C., Vasseur-Clausen P., Bareille M. P., Maillet A., Parant M. (2002). Changes in kinetics of cerebral auto-regulation with head-down bed rest. Clin. Physiol. Funct. Imaging 22, 108–114. 10.1046/j.1365-2281.2002.00403.x
    1. Pavy-Le Traon A., Heer M., Narici M. V., Rittweger J., Vernikos J. (2007). From space to earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur. J. Appl. Physiol. 101, 143–194. 10.1007/s00421-007-0474-z
    1. Rangel-Castillo L., Gopinath S., Robertson C. S. (2008). Management of intracranial hypertension. Neurol. Clin. 26, 521–541. 10.1016/j.ncl.2008.02.003
    1. Saul J. P., Berger R. D., Chen M. H., Cohen R. J. (1989). Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am. J. Physiol. 256, 153–161.
    1. Soldatos T., Karakitsos D., Chatzimichail K., Papathanasiou M., Gouliamos A., Karabinis A. (2008). Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit. Care 12, R67. 10.1186/cc6897
    1. Tzeng Y. C., Ainslie P. N., Cooke W. H., Peebles K. C., Willie C. K., MacRae B. A., et al. . (2012). Assessment of cerebral autoregulation: the quandary of quantification. Am. J. Physiol. Heart Circ. Physiol. 303, 658–671. 10.1152/ajpheart.00328.2012
    1. Vernikos J., Dallman M. F., Keil L. C., O'Hara D., Convertino V. A. (1993). Gender differences in endocrine responses to posture and 7 days of−6 degrees head-down bed rest. Am. J. Physiol. 265, 153–161.
    1. Watenpaugh D. E. (2016). Analogs of microgravity: head-down tilt and water immersion. J. Appl. Physiol. 120, 904–914. 10.1152/japplphysiol.00986.2015
    1. Zhang R., Behbehani K., Levine B. D. (2009). Dynamic pressure–flow relationship of the cerebral circulation during acute increase in arterial pressure. J. Physiol. 587, 2567–2577. 10.1113/jphysiol.2008.168302
    1. Zhang R., Zuckerman J. H., Giller C. A., Levine B. D. (1998). Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol. 274, 233–241.
    1. Zuj K. A., Arbeille P., Shoemaker J. K., Blaber A. P., Greaves D. K., Xu D., et al. (2012). Impaired cerebrovascular autoregulation and reduced co(2) reactivity after long duration spaceflight. Am. J. Physiol. Heart Circ. Physiol. 302, 2592–2598. 10.1152/ajpheart.00029.2012

Source: PubMed

3
S'abonner