The effect of high dietary fiber intake on gestational weight gain, fat accrual, and postpartum weight retention: a randomized clinical trial

Holly R Hull, Amy Herman, Heather Gibbs, Byron Gajewski, Kelli Krase, Susan E Carlson, Debra K Sullivan, Jeannine Goetz, Holly R Hull, Amy Herman, Heather Gibbs, Byron Gajewski, Kelli Krase, Susan E Carlson, Debra K Sullivan, Jeannine Goetz

Abstract

Background: Interventions to prevent excessive gestational weight gain (GWG) have had limited success This pilot study examined the effectiveness of a single goal (SG) high dietary fiber intervention to prevent excessive GWG.

Methods: Twelve weekly lessons focused on consuming a high fiber diet (≥30 g/day). Snacks containing 10-12 g of dietary fiber were given for the first 6 weeks only. Body composition was measured at baseline and at the end of the intervention. At one-year postpartum, body weight retention and dietary practices were assessed. A p-value is reported for the primary analysis only. For all other comparisons, Cohen's d is reported to indicate effect size.

Results: The SG group increased fiber intake during the study (32 g/day at 6 weeks, 27 g/day at 12 weeks), whereas the UC group did not (~ 17 g/day). No differences were found for the proportion of women classified as excessive gainers (p = 0.13). During the intervention, the SG group gained less body weight (- 4.1 kg) and less fat mass (- 2.8 kg) (d = 1.3). At 1 year postpartum, the SG group retained less weight (0.35 vs. 4.4 kg, respectively, d = 1.8), and reported trying to currently eat high fiber foods.

Conclusion: The SG intervention resulted in less weight gain, fat accrual, and weight retention at 1 year postpartum. A residual intervention effect was detected postpartum with the participants reporting continued efforts to consume a high fiber diet.

Trial registration: NCT03984630; Trial registered June 13, 2019 (retrospectively registered).

Keywords: Body fat; Dietary fiber; Excessive weight gain; High fiber; Pregnancy; Single goal intervention.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Consort Diagram

References

    1. Badon SE, Dyer AR, Josefson JL, Group HSCR Gestational weight gain and neonatal adiposity in the Hyperglycemia and Adverse Pregnancy Outcome study-North American region. Obesity (Silver Spring, Md) 2014;22(7):1731–1738. 4100536.
    1. Moran LJ, Sui Z, Cramp CS, Dodd JM. A decrease in diet quality occurs during pregnancy in overweight and obese women which is maintained post-partum. Int J Obes. 2013;37(5):704–711.
    1. Reynolds RM, Osmond C, Phillips DIW, Godfrey KM. Maternal BMI, Parity, and pregnancy weight gain: influences on offspring adiposity in young adulthood. J Clin Endocrinol Metab. 2010;95(12):5365–5369.
    1. Mourtakos SP, Tambalis KD, Panagiotakos DB, Antonogeorgos G, Arnaoutis G, Karteroliotis K, Sidossis LS. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: a study of 5,125 children. BMC Pregnancy Childbirth. 2015;15(66):4373521.
    1. Endres LK, Straub H, McKinney C, Plunkett B, Minkovitz CS, Schetter CD, Ramey S, Wang C, Hobel C, Raju T, Shalowitz MU. Community Child Health Network of the Eunice Kennedy Shriver National Institute of Child H, Human D. Postpartum weight retention risk factors and relationship to obesity at 1 year. Obstet Gynecol. 2015;125(1):144–152.
    1. Hull HR, Thornton JC, Ji Y, Paley C, Rosenn B, Mathews P, Navder K, Yu A, Dorsey K, Gallagher D. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205(3):211 e211–211 e217.
    1. Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight and obesity among children and adolescents: United States, 1963–1965 through 2011–2012: Atlanta; 2014.
    1. Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes Rev. 2016;17(1):56–67.
    1. Ahmad FB, Bastian B. Quarterly provisional estimates for selected indicators of mortality, 2015-Quarter 1, 2017. Natl Center Health Stat:2017.
    1. Cawley J, Meyerhoefer C, Biener A, Hammer M, Wintfeld N. Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among US Adults with Obesity, by Diabetes Status. Pharmacoeconomics. 2015;33(7):707–722.
    1. Phelan S. Pregnancy: a "teachable moment" for weight control and obesity prevention. Am J Obstet Gynecol. 2010;202(2):135 e131–138. 2815033.
    1. Thangaratinam S, Rogozinska E, Jolly K, Glinkowski S, Roseboom T, Tomlinson JW, Kunz R, Mol BW, Coomarasamy A, Khan KS. Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence. BMJ (Clinical research ed) 2012;344(e2088):3355191.
    1. Streuling I, Beyerlein A, von Kries R. Can gestational weight gain be modified by increasing physical activity and diet counseling? A meta-analysis of interventional trials. Am J Clin Nutr. 2010;92(4):678–687.
    1. Kinnunen TI, Aittasalo M, Koponen P, Ojala K, Mansikkamaki K, Weiderpass E, Fogelholm M, Luoto R. Feasibility of a controlled trial aiming to prevent excessive pregnancy-related weight gain in primary health care. BMC Pregnancy Childbirth. 2008;8(37):2526978.
    1. Guelinckx I, Devlieger R, Mullie P, Vansant G. Effect of lifestyle intervention on dietary habits, physical activity, and gestational weight gain in obese pregnant women: a randomized controlled trial. Am J Clin Nutr. 2010;91(2):373–380.
    1. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. New England J Med. 2009;360(9):859–873.
    1. Tieu J, Shepherd E, Middleton P, Crowther CA. Dietary advice interventions in pregnancy for preventing gestational diabetes mellitus. Cochrane Database Syst Rev. 2017;1 CD006674.
    1. Ma Y, Olendzki BC, Wang J, Persuitte GM, Li W, Fang H, Merriam PA, Wedick NM, Ockene IS, Culver AL, Schneider KL, Olendzki GF, Carmody J, Ge T, Zhang Z, Pagoto SL. Single-component versus multicomponent dietary goals for the metabolic syndrome: a randomized trial. Ann Intern Med. 2015;162(4):248–257.
    1. Slavin JL. Dietary fiber and body weight. Nutrition (Burbank, Los Angeles County, Calif) 2005;21(3):411–418.
    1. Turner TF, Nance LM, Strickland WD, Malcolm RJ, Pechon S, O'Neil PM. Dietary adherence and satisfaction with a bean-based high-fiber weight loss diet: a pilot study. ISRN Obesity. 2013;2013:915415.
    1. Hermsdorff HH, Barbosa KB, Volp AC, Puchau B, Bressan J, Zulet MA, Martinez JA. Vitamin C and fibre consumption from fruits and vegetables improves oxidative stress markers in healthy young adults. Br J Nutr. 2012;107(8):1119–1127.
    1. Olendzki BC, Ma Y, Schneider KL, Merriam P, Culver AL, Ockene IS, Pagoto S. A simple dietary message to improve dietary quality: results from a pilot investigation. Nutrition (Burbank, Los Angeles County, Calif) 2009;25(7–8):736–744.
    1. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, Consortium ANRM. Dore J, Zucker JD, Clement K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–588.
    1. Mokkala K, Roytio H, Munukka E, Pietila S, Ekblad U, Ronnemaa T, Eerola E, Laiho A, Laitinen K. Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum Zonulin concentration, a marker for intestinal permeability. J Nutr. 2016;146(9):1694–1700.
    1. Wu GD. The gut microbiome, its Metabolome, and their relationship to health and disease. Nestle Nutr Inst Workshop Ser. 2016;84:103–110.
    1. Mokkala K, Houttu N, Vahlberg T, Munukka E, Ronnemaa T, Laitinen K. Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol. 2017;54(12):1147–1149.
    1. Amarasekara R, Jayasekara RW, Senanayake H, Dissanayake VH. Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia. J Obstet Gynaecol Res. 2015;41(5):662–669.
    1. Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, Marti-Romero M, Lopez RM, Florido J, Campoy C, Sanz Y. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104(1):83–92.
    1. Roytio H, Mokkala K, Vahlberg T, Laitinen K. Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. Br J Nutr. 2017;118(5):343–352.
    1. Bailey RL, Pac SG, Fulgoni VL, 3rd, Reidy KC, Catalano PM. Estimation of Total Usual Dietary Intakes of Pregnant Women in the United States. JAMA Netw Open. 2019;2(6):e195967.
    1. Dietary reference intakes for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein and amino acids . Institute of Medicine Panel on Macronutrients. 2005.
    1. Linne Y, Dye L, Barkeling B, Rossner S. Long-term weight development in women: a 15-year follow-up of the effects of pregnancy. Obes Res. 2004;12(7):1166–1178.
    1. Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice-Hall; 1986.
    1. Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr. 2003;77(5):1171–1178.
    1. Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ. The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J Nutr. 2006;136(10):2594–2599.
    1. Hebert JR, Hurley TG, Chiriboga DE, Barone J. A comparison of selected nutrient intakes derived from three diet assessment methods used in a low-fat maintenance trial. Public Health Nutr. 1998;1(3):207–214.
    1. Weight gain during pregnancy: Reexamining the guidelines . Washington (DC). Institute of Medicine, National Research Council, Committee to Reexamine IOM Pregnancy Weight Guidelines. 2009.
    1. Siri WE. Body composition from fluid spaces and density: analysis of methods: Washington, DC; 1961.
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, Consortium RE. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.
    1. Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic Press; 1977.
    1. Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ (Clinical research ed) 2002;325(7356):157–160.
    1. Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ (Clinical research ed). 2012;345:–e5605 PMC3431285.
    1. Walsh JM, McAuliffe FM. Impact of maternal nutrition on pregnancy outcome--does it matter what pregnant women eat? Best Pract Res Clin Obstet Gynaecol. 2015;29(1):63–78.
    1. Horan MK, McGowan CA, Gibney ER, Donnelly JM, McAuliffe FM. Maternal diet and weight at 3 months postpartum following a pregnancy intervention with a low glycaemic index diet: results from the ROLO randomised control trial. Nutrients. 2014;6(7):2946–2955.
    1. Horan MK, McGowan CA, Gibney ER, Byrne J, Donnelly JM, McAuliffe FM. Maternal Nutrition and Glycaemic Index during Pregnancy Impacts on Offspring Adiposity at 6 Months of Age--Analysis from the ROLO Randomised Controlled Trial. Nutrients. 2016;8(1):PMC4728621.
    1. O'Brien EC, Geraghty AA, O'Sullivan EJ, Riordan JA, Horan MK, Larkin E, Donnelly J, Mehegan J, Twomey PJ, McAuliffe FM. Five-year follow up of a low glycaemic index dietary randomised controlled trial in pregnancy-no long-term maternal effects of a dietary intervention. BJOG. 2019;126(4):514–524.
    1. US Department of Education IoES, Natinal Center for Education Statistics . 1992 National Adult Literacy Suvey and 2003 National Assessment of Adult Literacy. 2003.
    1. Paul HA, Bomhof MR, Vogel HJ, Reimer RA. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep. 2016;6:20683.

Source: PubMed

3
S'abonner