Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness - a review

Bernhard A Sabel, Josef Flammer, Lotfi B Merabet, Bernhard A Sabel, Josef Flammer, Lotfi B Merabet

Abstract

Vision loss due to ocular diseases such as glaucoma, optic neuropathy, macular degeneration, or diabetic retinopathy, are generally considered an exclusive affair of the retina and/or optic nerve. However, the brain, through multiple indirect influences, has also a major impact on functional visual impairment. Such indirect influences include intracerebral pressure, eye movements, top-down modulation (attention, cognition), and emotionally triggered stress hormone release affecting blood vessel dysregulation. Therefore, vision loss should be viewed as the result of multiple interactions within a "brain-eye-vascular triad", and several eye diseases may also be considered as brain diseases in disguise. While the brain is part of the problem, it can also be part of the solution. Neuronal networks of the brain can "amplify" residual vision through neuroplasticity changes of local and global functional connectivity by activating, modulating and strengthening residual visual signals. The activation of residual vision can be achieved by different means such as vision restoration training, non-invasive brain stimulation, or blood flow enhancing medications. Modulating brain functional networks and improving vascular regulation may offer new opportunities to recover or restore low vision by increasing visual field size, visual acuity and overall functional vision. Hence, neuroscience offers new insights to better understand vision loss, and modulating brain and vascular function is a promising source for new opportunities to activate residual vision to achieve restoration and recovery to improve quality of live in patients suffering from low vision.

Keywords: Glaucoma; brain; optic neuropathy; plasticity; recovery; vascular dysregulation; vision restoration.

Figures

Fig. 1.
Fig. 1.
Residual functions and subtle deficits in visual fields. Visual fields are not just black and white (blind and seeing fields) have “shades of grey”: hidden potentials with residual vision but also hidden problems in the “intact” sector. Blindsight is the phenomenon that patients are able to correctly guess that stimuli were presented without being aware of them. While correctly responding to vision signals, they report seeing nothing; unconscious seeing without knowing. Areas of residual vision are those with uncertain responses where patients respond only occasionally. These regions of the visual field are quite variable during repeated testing and are characterized by increased thresholds and longer response time. The hidden deficits in the “seeing field” make patients “sightblind”, but this can only be measured by tests that are sensitive to higher cognitive dysfunctions.
Fig. 2.
Fig. 2.
The brain-eye-vascular triad. This triad illustrates the interdependency of the three organ systems and their role in vision loss. The retina, which transforms light rays to electrical cell signals weighs only about 1 gram. But the estimated weight of the brain areas needed to support normal vision is on the order of several hundred grams. To understand the causes and consequences of vision loss, and to find new treatment options, the eye and the visual system cannot be viewed in isolation but rather need to be considered within the holistic context of different systems throughout the brain and vascular system. The arrows indicate the direction of interaction between brain (b), vascular system (v) and eye (e). The eye-brain influence is denoted as E2B (eye-to-brain) and B2E (brain-to-eye or brain-to-central visual structures). Such interactions can be direct or indirect. Note: blood flow is not only important for delivering nutrition / oxygen and removal of metabolic by-products, but it is also important for thermo-regulation when the eye is exposed to extreme heat or cold. IOP is at least in part regulated by the brain.
Fig. 3.
Fig. 3.
Emotional stress and the “Flammer Syndrome”. The term Flammer Syndrome (FS) describes a phenotype characterized by the presence of primary vascular dysregulation with a cluster of additional symptoms and signs. Symptoms and signs include the following: prolonged sleep onset time, prolonged blood flow cessation in the finger capillaries after cooling, disturbed autoregulation of ocular blood flow, increased prevalence of optic disc hemorrhages and activated retinal astrocytes, increased retinal venous pressure, increased stiffness of retinal vessels, higher spatial irregularities in retinal vessels, increased resistance in retroocular vessels, increased oxidative stress, altered gene expression as measured in lymphocytes, and altered activity of the autonomic nervous system (beat-to-beat variations of the heart).
Fig. 4.
Fig. 4.
The brain’s network to control vision. Many structures of the brain need to interact synchronously to execute visually elicited performance. The vision network is comprised of the retina, subcortical structures, and cortical areas of the brain with multiple interactions with each other. This graph depicts some of the most important brain regions and their presumed functions. The structures and some of their main functions are depicted in Table 2.
Fig. 5.
Fig. 5.
Residual vision and brain network amplification. (A) This graph serves only as a conceptual guide to appreciate the nature of residual vision and the interactions of retina and brain by neuronal oscillatory activity. Accordingly, vision loss (e.g. measured by detection ability) depends on how many cells are lost: the greater the cell loss, the greater is the defect in different regions of the visual field. Areas of residual vision (ARVs; shown in grey) correspond to regions of partial damage with or without vascular dysregulation. They are found in all kinds of visual field defects such as after stroke (e.g. hemianopia) or retinal or optic nerve damage (e.g. glaucoma). Black areas represent complete damage. Note, however, that many black regions may, in fact, have some residual visual function as well. (B) Whether or not visual stimuli processes by the retina are consciously perceived by the brains is not only determined by the strength of the neuronal signals sent by the retina to the brain, but it also depends on how the brain processes this information through synchronization, amplification and interpretation. Neural activity of the retina is represented here by a simple sine wave. If the brain network is disorganized (illustrated here by non-synchronized, out-of-phase brain sine waves), the sum of retinal and brain signals is too low to surpass the perceptual threshold and the visual stimulus is not perceived. When the brain is synchronized, this elevates (amplifies) the same residual visual signal to above-threshold perception, thus improving or restoring conscious vision.
Fig. 6.
Fig. 6.
Brain functional network reorganization. Healthy subjects have a strong functional connectivity network between occipital and frontal regions of the brain. But in patients with visual field defects this network is lost. When treated for 10 days with alternating current stimulation, this network is partially restored (Bola et al., 2014). Lower panel: As the brain functional connectivity recovers, so does the visual field (shown here with supra-threshold campimetry) (Sabel, 2016).
Fig. 7.
Fig. 7.
Activating residual vision. Examples of visual field recovery of three patients before and after treatment with alternating current stimulation (ACS); Top and middle panel: visual fields of a case with diabetic retinopathy and open-angle glaucoma before and after 10 days. The visual fields on the bottom is from a 27 year old male suffering from traumatic brain and optic nerve damage before and after 10 days of ACS with an additional 3 months of relaxation and eye yoga exercises. Note that visual field recovery emerges mostly from the grey regions (relative scotomas or “areas of residual vision”). Red circles indicate regions of vision recovery.

References

    1. AFB. Senior Site Press Release Archive. American Foundation for the Blind Launches Web Site to Help People with Vision Loss Maintain Independence. (accessed 03.04.2007).
    1. Amedi, A. , Raz, N. , Pianka, P. , Malach, R. & Zohary, E. (2003). Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nature Neuroscience, 6, 758–766.
    1. Amedi, A. , Floel, A. , Knecht, S. , Zohary, E. & Cohen, L.G. (2004). Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neuroscience, 7, 1266–1270.
    1. Anastassiou, G. , Schneegans, A.L. , Selbach, M. & Kremmer, S. (2013). Transpalpebral electrotherapy for dry age-related macular degeneration (AMD): An exploratory trial. Restorative Neurology and Neuroscience, 31, 571–578.
    1. Armstrong, R.A. (2011). Visual signs and symptoms of progressive supranuclear palsy. Clinical & Experimental Optometry, 94, 150–160.
    1. Armstrong, R. & Kergoat, H. (2015). Oculo-visual changes and clinical considerations affecting older patients with dementia. Ophthalmic & Physiological Optics, 35, 352–376.
    1. Armstrong, R.A. & Syed, A.B. (1996). Alzheimer’s disease and the eye. Ophthalmic & Physiological Optics, 16, S2–8.
    1. Backon, J. , Matamoros, N. , Ramirez, M. , Sanchez, R.M. , Ferrer, J. , Brown, A. & Ticho, U. (1990). A functional vagotomy induced by unilateral forced right nostril breathing decreases intraocular pressure in open and closed angle glaucoma. British Journal of Ophthalmology, 74, 607–609.
    1. Baertschi, M. , Dayhaw-Barker, P. & Flammer, J. (2016). The effect of hypoxia on intra-ocular, mean arterial, retinal venous and ocular perfusion pressures. Clinical Hemorheology and Microcirculation, 63, 293–303.
    1. Balliett, R. , Blood, K.M. & Bach-y-Rita, P. , (1985). Visual field rehabilitation in the cortically blind? Journal of Neurology, Neurosurgery, and Psychiatry, 48, 1113–1124.
    1. Bauer, C.M. , Hirsch, G.V. , Zajac, L. , Koo, B.B. , Collignon, O. & Merabet, L.B. (2017). Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness. PLoS One, 12, e0173064.
    1. Bedny, M. , Pascual-Leone, A. , Dodell-Feder, D. , Fedorenko, E. & Saxe, R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proceedings of the National Academy of Sciences of the United States of America, 108, 4429–4434.
    1. Benowitz, L.I. , He, Z. & Goldberg, J.L. (2017). Reaching the brain: Advances in optic nerve regeneration. Experimental Neurology, 287, 365–373.
    1. Berdahl, J.P. , Allingham, R.R. & Johnson, D.H. (2008). Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology, 115, 763–768.
    1. Bittner, A.K. & Seger, K. (2018). Longevity of visual improvements following transcorneal electrical stimulation and efficacy of retreatment in three individuals with retinitis pig-mentosa. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256, 299–306.
    1. Black, P. (1982). Visual disorders associated with cerebral palsy. British Journal of Ophthalmology, 66, 46–52.
    1. Bodis-Wollner, I. (1990). The visual systemin Parkinson's disease. Research publications — Association for Research in Nervous and Mental Disease, 67, 297–316.
    1. Bojinova, R.I. , Konieczka, K. , Meyer, P. & Todorova, M.G. (2016). The trilateral link between anaesthesia, perioperative visual loss and Flammer syndrome. BMC Anesthesiology, 16, 10.
    1. Bola, M. & Sabel, B.A. (2015). Dynamic reorganization of brain functional networks during cognition. Neuroimage, 114, 398–413.
    1. Bola, M. , Gall, C. & Sabel, B.A. (2013). “Sightblind”: Perceptual deficits in the “intact” visual field. Frontiers in Neurology, 4, 80.
    1. Bola, M. , Gall, C. & Sabel, B.A. (2015). Disturbed temporal dynamics of brain synchronization in vision loss. Cortex, 67, 134–146.
    1. Bola, M. , Gall, C. , Moewes, C. , Fedorov, A. , Hinrichs, H. & Sabel, B.A. (2014). Brain functional connectivity network breakdown and restoration in blindness. Neurology, 83, 542–551.
    1. Bolognini, N. , Rasi, F. , Coccia, M. & Ladavas, E. (2005). Visual search improvement in hemianopic patients after audio-visual stimulation. Brain, 128, 2830–2842.
    1. Bosking, W.H. , Beauchamp, M.S. & Yoshor, D. (2017). Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annual Review of Vision Science, 3, 141–166.
    1. Bourne, R.R.A. , Flaxman, S.R. , Braithwaite, T. , Cicinelli, M.V. , Das, A. , Jonas, J.B. , Keeffe J., Kempen, J.H. , Leasher, J. , Limburg, H. , Naidoo, K. , Pesudovs, K. , Resnikoff, S. , Silvester, A. , Stevens, G.A. , Tahhan, N. , Wong, T.Y. & Taylor, H.R. , Vision Loss Expert Group (2017). Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. The Lancet Global Health, 5, e888–897.
    1. Boyers, L.N. , Karimkhani, C. , Hilton, J. , Richheimer, W. & Dellavalle, R.P. (2015). Global burden of eye and vision disease as reflected in the Cochrane Database of Systematic Reviews. JAMA Ophthalmology, 133, 25–31.
    1. Bridge, H. , Thomas, O. , Jbabdi, S. & Cowey, A. (2008). Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain, 131, 1433–1444.
    1. Calkins, D.J. , Pekny, M. , Cooper, M.L. & Benowitz, L. (2017). The challenge of regenerative therapies for the optic nerve in glaucoma. Lasker/IRRF Initiative on Astrocytes and Glau-comatous Neurodegeneration Participants. Experimental Eye Research, 157, 28–33.
    1. Chen, S.P. , Bhattacharya, J. & Pershing, S. (2017). Association of Vision Loss With Cognition in Older Adults. JAMA Ophthalmology, 135, 963–970.
    1. Chen, K.W. , Berger, C.C. , Manheimer, E. , Forde, D. , Magidson, J. , Dachman, L. & Lejuez, J.W. (2012). Meditative Therapies for Reducing Anxiety: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Depression and Anxiety, 29, 545–562.
    1. Cheng, D.L. , Greenberg, P.B. & Borton, D.A. (2017). Advances in Retinal Prosthetic Research: A Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives. Current Eye Research, 42, 334–347.
    1. Chun, B.Y. & Cestari, D.M. (2017). Advances in experimental optic nerve regeneration. Current Opinion in Ophthalmology, 28, 558–563.
    1. Cohen, L.G. , Celnik, P. , Pascual-Leone, A. , Corwell, B. , Falz, L. , Dambrosia, J. , Honda, M. , Sadato, N. , Gerloff, C. , Catala, M.D. & Hallett, M. , (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389, 180–183.
    1. Collignon, O. , Vandewalle, G. , Voss, P. , Albouy, G. , Charbonneau, G. , Lassonde, M. & Lepore, F. (2011). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proceedings of the National Academy of Sciences of the United States of America, 108, 4435–4440.
    1. Connell, N. & Merabet, L.B. , (2014). Uncovering the connectivity of the brain in relation to novel vision rehabilitation strategies. Neurology, 83, 484–485.
    1. Costello, F. , (2016). Vision Disturbances in Multiple Sclerosis. Semin Neurol, 36, 185–195.
    1. Cotman, C.W. & Berchtold, N.C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neuroscience, 25, 295–301.
    1. Dada T., Mittal D., Mohanty K., Faiq M.A., Bhat M.A., Yadav R.K., Sihota R., Sidhu T., Velpandian T., Kalaivani M., Pandey R.M., Gao Y., Sabel B.A., Dada R. (2018). Mindfulness Meditation Reduces Intraocular Pressure, Lowers Stress Biomarkers and Modulates Gene Ex-pression in Glaucoma: a randomized controlled trial. Journal of Glaucoma, in press.
    1. Dagnelie, G. (2013). Age-related psychophysical changes and low vision. Investigative Ophthalmology and Visual Sciences, 54, ORSF88–93.
    1. Dampney, R.A. (2015). Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 309, R429–443.
    1. de Haan, G.A. , Heutink, J. , Melis-Dankers, B.J. & Tucha, O. (2014). Brouwer WH. Spontaneous recovery and treatment effects in patients with homonymous visual field defects: A meta-analysis of existing literature in terms of the ICF framework. Survey of Ophthalmology, 59, 77–96.
    1. de Lima, S. , Habboub, G. & Benowitz, L.I. (2012). Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. International Review of Neurobiology, 106, 153–172.
    1. Duncan, R.O. , Sample, P.A. , Weinreb, R.N. , Bowd, C. & Zangwill, L.M. (2007). Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss. Progress in Retinal and Eye Research, 26, 38–56.
    1. Dundon, N.M. , Ladavas, E. , Maier, M.E. & Bertini, C. (2015). Mul-tisensory stimulation in hemianopic patients boosts orienting responses to the hemianopic field and reduces attentional resources to the intact field. Restorative Neurology and Neu-roscience, 33, 405–419.
    1. Engelhorn, T. , Michelson, G. , Waerntges, S. , Struffert, T. , Haider, S. & Doerfler, A. (2011). Diffusion Tensor Imaging Detects Rarefaction of Optic Radiation in Glaucoma Patients. Acada-demic Radiology, 18, 764–769.
    1. Erb, W. (1882). Handbuch der Elektrotherapie. Verlag V.C.W. Vogel; Leipzig.
    1. Erb, C. , Batra, A. , Lietz, A. , Bayer, A.U. , Flammer, J. & Thiel, H.J. (1999). Psychological characteristics of patients with normal-tension glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology, 237, 753–757.
    1. Fahle, M. (2002). Perceptual learning: Gain without pain? Nature Neuroscience, 5, 923–924.
    1. Faiq, M.A. , Dada, R. , Kumar, A. , Saluja, D. & Dada, T. (2016). Brain: The potential diagnostic and therapeutic target for Glaucoma. Current Drug Targets, CNS and Neurological Disorders, 15, 839–844.
    1. Fang, L. , Baertschi, M. & Mozaffarieh, M. (2014). The effect of flammer-syndrome on retinal venous pressure. BMC Ophthalmology, 14, 121.
    1. Fernandes, R.A.B. , Diniz, B. , Ribeiro, R. & Humayun, M. (2012). Artificial vision through neuronal stimulation. Neuroscience Letters, 519, 122–128.
    1. Flammer, J. & Drance. S.M. (1983a). Effect of acetazolamide on the differential threshold. Archives of Ophthalmology, 101, 1378–1380.
    1. Flammer, J. & Drance, S.M. (1983b). Reversibility of a glaucoma-tous visual field defect after acetazolamide therapy. Canadian Journal of Ophthalmology, 18, 139–141.
    1. Flammer, J. & Konieczka, K. (2015). Retinal venous pressure: The role of endothelin. EPMA Journal, 6, 21.
    1. Flammer, J. & Konieczka, K. (2017). The discovery of the Flammer syndrome: A historical and personal perspective. EPMA Journal, 8, 75–97.
    1. Flammer, J. , Drance, S.M. & Fankhauser, F. (1984a). Differential light threshold. Short- and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Archives of Ophthalmology, 102, 876–879.
    1. Flammer, J. , Drance, S.M. & Schulzer, M. (1984b). Covariates of the Long-term Fluctuation of the Differential Light Threshold. Archives of Ophthalmology, 102, 880–882.
    1. Flammer, J. , Drance, S.M. & Zulauf, M. (1984c). Differential light threshold. Short- and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Archives of Ophthalmology, 102, 704–706.
    1. Flammer, J. , Konieczka, K. & Flammer, A.J. (2013b). The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA Journal, 4, 14.
    1. Flammer, J. , Pache, M. & Resink, T. (2001). Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Progress in Retinal and Eye Research, 20, 319–349.
    1. Flammer, J. , Orgül, S. , Costa, V.P. , Orzalesi, N. , Krieglstein, G.K. , Serra, L.M. , Renard, J.P. & Stefansson, E. (2002). The impact of ocular blood flow in glaucoma. Progress in Retinal and Eye Research, 21, 359–393.
    1. Flammer, J. , Konieczka, K. , Bruno, R.M. , Virdis, A. , Flammer, A.J. & Taddei, S. (2013a). The eye and the heart. European Heart Journal, 34, 1270–1278.
    1. Foik, A.T. , Kublik, E. , Sergeeva, E.G. , Tatlisumak, T. , Rossini, P.M. , Sabel, B.A. & Waleszczyk, W.J. (2015). Retinal origin of electrically evoked potentials in response to transcorneal alternating current stimulation in the rat. Investigative Ophthalmology and Visual Scinces, 56, 1711–1718.
    1. Freund, H.-J. , Sabel, B.A. & Witte, O. (Eds.) (1997). Brain Plasticity. Lippincott: /Raven Press.
    1. Fujikado, T. , Morimoto, T. , Matsushita, K. , Shimojo, H. , Okawa, Y. & Tano, Y. (2006). Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Japanese Journal of Ophthalmology, 50, 266–273.
    1. Gall, C. , Sgorzaly, S. , Schmidt, S. , Brandt, S. , Fedorov, A. & Sabel, B.A. (2011). Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Brain Stimulation, 4, 175–188.
    1. Gall, C. , Schmidt, S. , Schittkowski, M.P. , Antal, A. , Ambrus, G.G. , Paulus, W. , Dannhauer, M. , Michalik, R. , Mante, A. , Bola, M. , Lux, A. , Kropf, S. , Brandt, S.A. & Sabel, B.A. (2016). Alternating current stimulation for vision restoration after optic nerve damage: A randomized clinical trial. PLoS One, 11, e0156134.
    1. Gao, Y. & Sabel, B.A. (2017). Microsaccade dysfunction and adaptation in hemianopia after stroke. Restorative Neurology and Neuroscience, 35, 365–376.
    1. Gao, Y. , Huber, C. & Sabel, B.A. (2018). Stable microsaccades and microsaccade-induced alpha band phase reset across the life span. Investigative Ophthalmology and Visual Sciences, 59, 2032–2041.
    1. Gasser, P. & Flammer, J. (1986). Optic neuropathy of Graves’ disease. A report of a perimetric follow-up Ophthalmologica, 192, 22–27.
    1. Gasser, P. & Flammer, J. (1990). Short- and long-term effect of nifedipine on the visual field in patients with presumed vasospasm. The Journal of International Medical Research, 18, 334–339.
    1. Gherghel, D. , Orgul, S. , Dubler, B. , Lü beck, P. , Gugleta, K. & Flammer, J. (1999). Is vascular regulation in the central retinal artery altered in persons with vasospasm? Archives of Ophthalmology, 117, 1359–1362.
    1. Gilbert, C.D. & Wiesel, T.N. (1992). Receptive field dynamics in adult primary visual cortex. Nature, 356, 150–152.
    1. Gnanalingham, K.K. , Bhattacharjee, S. , Pennington, R. , Ng, J. & Mendoza, N. (2005). The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: Predictive factors for a good outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 415–419.
    1. Gougoux, F. , Zatorre, R.J. , Lassonde, M. , Voss, P. & Lep-ore, F. (2005). A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals. PLoS Biology, 3, e27.
    1. Grieshaber, M.C. , Terhorst, T. & Flammer, J. (2006). The pathogenesis of optic disc splinter haemorrhages: A new hypothesis. Acta Ophthalmologica Scandinavica, 84, 62–68.
    1. Gupta, N. , Ang, L.C. , de Tilly, L.N. , Bidaisee, L. & Yucel, Y.H. (2006). Human glaucoma and neural degeneration in intracra-nial optic nerve, lateral geniculate nucleus, and visual cortex. British Journal of Ophthalmology, 90, 674–678.
    1. Gupta, N. , & Yucel Y. H. (2007). Glaucoma as a neurode-generative disease. Current Opinion in Ophthalmology, 18, 110–114.
    1. Guthauser, U. , Flammer, J. & Mahler, F. (1988). The relationship between digital and ocular vasospasm. Graefe’s Archive for Clinical and Experimental Ophthalmology, 226, 224–226.
    1. Haas, A. , Flammer, J. & Schneider, U. (1986). Influence of age on the visual fields of normal subjects. American Journal of Ophthalmology, 101, 199–203.
    1. Hadid, V. & Lepore, F. (2017). From Cortical Blindness to Conscious Visual Perception: Theories on Neuronal Networks and Visual Training Strategies. Frontiers in Systems Neuro-science, 11, 64.
    1. Hadjinicolaou, A.E. , Meffin, H. , Maturana, M.I. , Cloherty, S.L. & Ibbotson, M.R. (2015). Prosthetic vision: Devices, patient outcomes and retinal research. Clinical & Experimental Optometry, 98, 395–410.
    1. Halko, M.A. , Datta, A. , Plow, E.B. , Scaturro, J. , Bikson, M. & Merabet, L.B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage, 57, 885–891.
    1. Hamilton, R. , Keenan, J.P. , Catala, M. & Pascual-Leone, A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport, 11, 237–240.
    1. Harwerth, R.S. , Crawford, M.L.J. , Frishman, L.J. , Viswanathan, S. , Smith, Earl L. III & Carter-Dawson, L. (2002). Visual field defects and neural losses from experimental glaucoma. Progress in Retinal and Eye Research, 21, 91–125.
    1. Henrich-Noack, P. , Sergeeva, E. & Sabel, B.A. (2017). Non-invasive electrical brain stimulation: From acute to late-stage treatment of CNS damage. Neural Regeneration Research, 12, 1590–1594.
    1. Herrmann, C.S. , Rach, S. , Neuling, T. & Struber, D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279.
    1. Hou, R. , Zhang, Z. , Yang, D. , Wang, H. , Chen, W. , Li, Z. , Sang, J. , Liu, S. , Cao, Y. , Xie, X. , Ren, R. , Zhang, Y. , Sabel, B.A. & Wang, N. (2016). Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: The Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Research, 1635, 201–208.
    1. Huxlin, K.R. , Martin, T. , Kelly, K. , Riley, M. , Friedman, D.I. , Burgin, W.S. & Hayhoe, M. (2009). Perceptual relearning of complex visual motion after V1 damage in humans. Journal of Neuroscience, 29, 3981–3991.
    1. Jobke, S. , Kasten, E. & Sabel, B.A. (2009). Vision restoration through extrastriate stimulation in patients with visual field defects. Neurorehabilitation and Neural Repair, 23, 246–255.
    1. Kanjee, R. , Yücel, Y.H. , Steinbach, M.J. , González, E.G. & Gupta, N. (2012). Delayed saccadic eye movements in glaucoma. Eye and Brain, 4, 63–68.
    1. Kasten, E. , Bunzenthal, U. & Sabel, B.A. (2006). Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: An eye-tracker study. Behavioural Brain Research, 175, 18–26.
    1. Kasten, E. , Guenther, T. & Sabel, B.A. (2008). Inverse stimuli in perimetric performance reveal larger visual field defects: Implications for vision restoration. Restorative Neurology and Neuroscience, 26, 355–364.
    1. Kasten, E. , Wüst, S. , Behrens-Baumann, W. & Sabel, B.A. (1998). Computer-based training for the treatment of partial blindness. Nature Medicine, 4, 1083–1087.
    1. Killer, H.E. , Jaggi, G.P. , Flammer, J. , Miller, N.R. , Huber, A.R. & Mironov, A. (2007). Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain, 130, 514–520.
    1. Kochkorov, A. , Gugleta, K. , Zawinka, C. , Katamay, R. , Flammer, J. & Orgul, S. (2006). Short-term retinal vessel diameter variability in relation to the history of cold extremities. Investigative Ophthalmology and Visual Sciences, 47, 4026–4033.
    1. Kölmel, H.W. (1985). Complex visual hallucinations in the hemianopic field. Journal of Neurology, Neurosurgery, and Psychiatry, 48, 29–38.
    1. Konieczka, K. & Erb, C. (2017). Diseases potentially related to Flammer syndrome. EPMA Journal, 8, 327–332.
    1. Konieczka, K. & Flammer, J. (2016). Phenomenology and Clinical Relevance of the Flammer Syndrome. Klinische Monatsblätter fur Augenheilkunde, 233, 1331–1336.
    1. Konieczka, K. , Ritch, R. , Traverso, C.E. , Kim, D.M. , Kook, M.S. , Gallino, A. , Golubnitschaja, O. , Erb, C. , Reitsamer, H.A. , Kida, T. , Kurysheva, N. & Yao, K. (2014). Flammer syndrome. EPMA Journal, 5, eCollection.
    1. Konieczka, K. , Koch, S. , Binggeli, T. , Schoetzau, A. & Kesselring, J. (2016b). Multiple sclerosis and primary vascular dysregu-lation (Flammer syndrome). EPMA Journal, 7, 13.
    1. Konieczka, K. , Koch, S. , Schoetzau, A. & Todorova, M.G. (2016a). Increased Prevalence of Flammer Syndrome in Patients with Retinitis Pigmentosa. Klinische Monatsblätter für Augenheilkunde, 233, 448–452.
    1. Konieczka, K. , Todorova, M.G. , Bojinova, R.I. , Binggeli, T. , Chackathayil, T.N. & Flammer, J. (2016c). Unexpected Effect of Calcium Channel Blockers on the Optic Nerve Compartment Syndrome. Klinische Monatsblatter für Augenheilkunde, 233, 387–390.
    1. Kupers, R. , Beaulieu-Lefebvre, M. , Schneider, F.C. , Kassuba, T. , Paulson, O.B. , Siebner, H.R. & Ptito, M. (2011). Neural correlates of olfactory processing in congenital blindness. Neuropsychologia, 49, 2037–2044.
    1. Kurysheva, N.I. , Ryabova, T.Y. & Shlapak, V.N. (2018). Heart rate variability: The comparison between high tension and normal tension glaucoma. EPMA Journal, 9, 35–45.
    1. Land, M.F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25, 296–324.
    1. Lewis, P.M. & Rosenfeld, J.V. (2016). Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective. Brain Research, 1630, 208–224.
    1. Longden, T.A. , Dabertrand, F. , Koide, M. , Gonzales, A.L. , Tykocki, N.R. , Brayden, J.E. , Hill-Eubanks, D. & Nelson, M.T. (2017). Capillary K+-sensing initiates retrograde hyper-polarization to increase local cerebral blood flow. Nature Neuroscience, 20, 717–726.
    1. MacAskill, M.R. & Anderson, T.J. (2016). Eye movements in neu-rodegenerative diseases. Current Opinion in Neurology, 29, 61–68.
    1. Mahler, F. , Saner, H. , Wü rbel, H. & Flammer, J. (1989). Local cooling test for clinical capillaroscopy in Raynaud’s phenomenon, unstable angina, and vasospastic visual disorders. Vasa, 18, 201–204.
    1. Mann, L. (1904). Über elektrotherapeutische Versuche bei Optikuserkrankungen. Zeitschrfur diätphys Therapie, 8,416–427.
    1. Marra, G. & Flammer, J. (1991). The learning and fatigue effect in automated perimetry. Graefe’s Archive for Clinical and Experimental Ophthalmology, 229, 501–504.
    1. Marshall, R.S. , Ferrera, J.J. , Barnes, A. , Zhang, X. , O'Brien, K.A. , Chmayssani, M. , Hirsch, J. & Lazar, R.M. (2008). Brain activity associated with stimulation therapy of the visual borderzone in hemianopic stroke patients. Neurorehabilitation and Neural Repair, 22, 136–144.
    1. Martinez-Conde, S. , Otero-Millan, J. & Macknik, S.L. (2013). The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature reviews Neuroscience, 14, 83–96.
    1. Matteo, B.M. , Vigano, B. , Cerri, C.G. & Perin, C. (2016). Visual field restorative rehabilitation after brain injury. Journal of Vision, 16, 11.
    1. Mazzi, C. , Savazzi, S. & Silvanto, J. (2018). On the “blindness” of blindsight: What is the evidence for phenomenal awareness in the absence of primary visual cortex (V1)? Neuropsychologia, in press.
    1. Meienberg, O. , Flammer, J. & Ludin, H.P. (1982). Subclinical visual field defects in multiple sclerosis. Demonstration and quantification with automated perimetry, and comparison with visually evoked potentials. Journal of Neurology, 227, 125–133.
    1. Merabet, L.B. (2011). Building the bionic eye: An emerging reality and opportunity. Progress in Brain Research, 192, 3–15.
    1. Merabet, L.B. & Pascual-Leone, A. (2010). Neural reorganization following sensory loss: The opportunity of change. Nature Reviews Neuroscience, 11, 44–52.
    1. Merabet, L.B. , Rizzo, J.F. 3rd , Pascual-Leone, A. & Fernandez, E. (2007). ‘Who is the ideal candidate?’ Decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. Journal of Neural Engineering, 4, S130–135.
    1. Merabet, L.B. , Rizzo, J.F. , Amedi, A. , Somers, D.C. & Pascual-Leone, A. (2005). What blindness can tell us about seeing again: Merging neuroplasticity and neuroprostheses. Nature Reviews Neuroscience, 6, 71–77.
    1. Metz, G.A. , Schwab, M.E. & Welzl, H. (2001). The effects of acute and chronic stress on motor and sensory performance in male Lewis rats. Physiology & Behavior, 72, 29–35.
    1. Mills, J.O. , Jalil, A. & Stanga, P.E. (2017). Electronic retinal implants and artificial vision: Journey and present. Eye (London), 31, 1383–1398.
    1. Morimoto, T. , Miyoshi, T. , Matsuda, S. , Tano, Y. , Fujikado, T. & Fukuda, Y. (2005). Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Investigative Ophthalmology and Visual Sciences, 46, 2147–2155.
    1. Morris, S.L. , Foster, C.J. , Parsons, R. , Falkmer, M. , Falkmer, T. & Rosalie, S.M. (2015). Differences in the use of vision and pro-prioception for postural control in autism spectrum disorder. Neuroscience, 307, 273–280.
    1. Mozaffarieh, M. , Schoetzau, A. , Sauter, M. , Grieshaber, M. , Orgiil, S. , Golubnitschaja, O. & Flammer, J. (2008). Comet assay analysis of single-stranded DNA breaks in circulating leukocytes of glaucoma patients. Molecular Vision, 14, 1584–1588.
    1. Mozaffarieh, M. , FontanaGasio, P. , Schotzau, A. , Orgiil, S. , Flammer, J. & Krauchi, K. (2010). Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population. Population Health Metrics, 8, 17.
    1. Najarpour Foroushani, A. , Pack, C.C. & Sawan, M. (2018). Cortical visual prostheses: From microstimulation to functional percept. Journal of Neural Engineering, 15, 021005.
    1. Ohl, S. , Wohltat, C. , Kliegl, R. , Pollatos, O. & Engbert, R. (2016). Microsaccades Are Coupled to Heartbeat. Journal of Neuro-science, 36, 1237–1241.
    1. Otto, J. & Michelson, G. (2014). Repetitive tests of visual function improved visual acuity in young subjects. British Journal of Ophthalmology, 98, 383–386.
    1. Owsley, C. (2011). Aging and vision. Vision Research, 51, 1610–1622.
    1. Pache, M. , Kräuchi, K. , Cajochen, C. , Wirz-Justice, A. , Dubler, B. , Flammer, J. & Kaiser, H.J. (2001). Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet, 358, 125–126.
    1. Palva, J.M. & Palva, S. (2017). Functional integration across oscillation frequencies by cross-frequency phase synchronization. European Journal of Neuroscience, in press.
    1. Pammer, K. (2014). Temporal sampling in vision and the implications for dyslexia. Frontiers in Human Neuroscience, 7, 933.
    1. Pardue, M.T. & Allen, R.S. (2018). Neuroprotective strategies for retinal disease. Progress in Retinal and Eye Research, 65, 50–76.
    1. Pascual-Leone, A. , Amedi, A. , Fregni, F. & Merabet, L.B. (2005). The plastic human brain cortex. Annual Review of Neuro-science, 28, 377–401.
    1. Pascolini, D. & Mariotti, S.P. (2012). Global estimates of visual impairment 2010. British Journal of Ophthalmology, 96, 614–618.
    1. Plow, E.B. , Obretenova, S.N. , Fregni, F. , Pascual-Leone, A. & Merabet, L.B. (2012). Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabilitation and Neural Repair, 26, 616–626.
    1. Poggel, D.A. , Kasten, E. & Sabel, B.A. (2004). Attentional cueing improves vision restoration therapy in patients with visual field loss. Neurology, 63, 2069–2076.
    1. Poggel, D.A. , Kasten, E. , Müller-Oehring, E.M. , Bunzenthal, U. & Sabel, B.A. (2006a). Improving residual vision by atten-tional cueing in patients with brain lesions. Brain Research Cognitive Brain Research, 1097, 142–148.
    1. Poggel, D.A. , Müller-Oehring, E.M. , Gothe, J. , Kenkel, S. , Kasten, E. & Sabel, B.A. (2006b). Visual hallucinations during spontaneous and training-induced visual field recovery. Neu-ropsychologia, 45, 2598–2607.
    1. Polat, U. , Ma-Naim, T. , Belkin, M. , Sagi, D. (2004). Improving vision in adult amblyopia by perceptual learning. Proc Natl Acad Sci USA, 101, 6692–6697.
    1. Pöppel, E. , Held, R. & Frost, D. (1973). Residual visual function after brain wounds involving the central visual pathways in man. Nature, 243, 295–296.
    1. Proudlock, F.A. & Gottlob, I. (2007). Physiology and pathology of eye-head coordination. Progress in Retinal and Eye Research, 26, 486–515.
    1. Quigley, H.A. (2011). Glaucoma. Lancet, 377, 1367–1377.
    1. Rachitskaya, A.V. & Yuan, A. (2016). Argus II retinal prosthesis system: An update. Ophthalmic Genetics, 37, 260–266.
    1. Reinhard, J. , Schreiber, A. , Schiefer, U. , Kasten, E. , Sabel, B.A. , Kenkel, S. , Vonthein, R. & Trauzettel-Klosinski, S. (2005). Does visual restitution training change absolute homonymous visual field defects? A fundus controlled study. British Journal of Ophthalmology, 89, 30–35.
    1. Roder, B. , Stock, O. , Bien, S. , Neville, H. & Rosler, F. (2002). Speech processing activates visual cortex in congenitally blind humans. European Journal of Neuroscience, 16, 930–936.
    1. Romano, J.G. , Schulz, P. & Kenkel, S. (2008). Visual field changes after a rehabilitation intervention: Vision restoration therapy. Journal of the Neurological Sciences, 273, 70–74.
    1. Rosenberg, E.A. & Sperazza, L.C. (2008). The visually impaired patient. American Family Physician, 77, 1431–1436.
    1. Roth, T. , Sokolov, A.N. , Messias, A. , Roth, P. , Weller, M. & Trauzettel-Klosinski, S. (2009). Comparing explorative sac-cade and flicker training in hemianopia: A randomized controlled study. Neurology, 72, 324–331.
    1. Sabel, B.A. (1999). Restoration of vision I: Neurobiological mechanisms of restoration and plasticity after brain damage -a review. Restorative Neurology and Neuroscience, 15, 177–200.
    1. Sabel, B. (2016). Restoring Low Vision, Amazon, Charleston.
    1. Sabel, B.A. & Gudlin, J. (2014). Vision Restoration Training for Glaucoma. A randomized Clinical Trial JAMA Ophthalmology, 132, 381–389.
    1. Sabel, B.A. , Fedorov, A. , Henrich-Noack, P. & Gall, C. (2011a). Vision restoration after brain damage: The “Residual Vision Activation Theory”. Progress in Brain Research, 192, 199–262.
    1. Sabel, B.A. , Wang, J. , Cárdenas-Morales, L. , Faiq, M. & Heim, C. (2018). Mental stress as consequence and cause of vision loss: The dawn of psychosomatic ophthalmology - a review. EPMA Journal, 9, 133–160.
    1. Sabel, B.A. , Fedorov, A.B. , Naue, N. , Borrmann, A. , Herrmann, C. & Gall, C. (2011b). Non-invasive alternating current stimulation improves vision in optic neuropathy. Restorative Neurology and Neuroscience, 29, 493–505.
    1. Sadato, N. , Pascual-Leone, A. , Grafman, J. , Ibaflez, V. , Deiber, M.P. , Dold, G. & Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380, 526–528.
    1. Sahraie, A. , Trevethan, C.T. , MacLeod, M.J. , Murray, A.D. , Olson, J.A. & Weiskrantz, L. (2006). Increased sensitivity after repeated stimulation of residual spatial channels in blind-sight. Proceedings of the National Academy of Sciences of the United States of America, 103, 14971–14976.
    1. Samuels, B.C. , Hammes, N.M. , Johnson, P.L. , Shekhar, A. , McKinnon, S.J. & Allingham, R.R. (2012). Dorsome-dial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Investigative Ophthalmology and Visual Sciences, 53, 7328–7335.
    1. Sanders, M.D. , Warrington, E.K. , Marshall, J. & Weiskrantz, L. (1974). “Blindsight”: Vision in a field defect. Lancet, 1, 707–708.
    1. Schatz, A. , Rock, T. , Naycheva, L. , Willmann, G. , Wilhelm, B. , Peters, T. , Bartz-Schmidt, K.U. , Zrenner, E. , Messias, A. & Gekeler, F. (2011). Transcorneal electrical stimulation for patients with retinitis pigmentosa: A prospective, randomized, sham-controlled exploratory study. Investigative Ophthalmology and Visual Sciences, 52, 4485–4496.
    1. Schoemann, J. , Engelhorn, T. , Waerntges, S. , Doerfler, A. , El-Rafei, A. & Michelson, G. (2014). Cerebral microinfarcts in primary open-angle glaucoma correlated with DTI-derived integrity of optic radiation. Investgative Ophthalmology and Visual Sciences, 55, 7241–7247.
    1. Schultz, G. & Melzack, R. (1991). The Charles Bonnet syndrome: ‘Phantom visual images.’ Perception, 20, 809–825.
    1. Seiler, M.J. & Aramant, R.B. (2012). Cell replacement and visual restoration by retinal sheet transplants. Progress in Retinal and Eye Research, 31, 661–687.
    1. Shandurina, A.N. & Panin, A.V. (1990). Clinical and physiological analysis of periorbital transcutaneous electrical stimulation method for damaged optic nerve and retina. Fiziologiia Che-loveka, 16, 53–59.
    1. Shemagonov, A.V. & Sidorenko, V.N. (2000). Can the Medical Resonance Therapy Music affect autonomous innervation of cerebral arteries? Integrative Physiological and Behavioral Science, 35, 218–223.
    1. Shepherd, R.K. , Shivdasani, M.N. , Nayagam, D.A. , Williams, C.E. & Blamey, P.J. (2013). Visual prostheses for the blind. Trends in Biotechnology, 31, 562–571.
    1. Shi, X.F. , Xu, L.M. , Li, Y. , Wang, T. , Zhao, K.X. & Sabel, B.A. (2012). Fixational saccadic eye movements are altered in anisometropic amblyopia. Restorative Neurology and Neu-roscience, 30, 445–462.
    1. Shily, B.G. (1987). Psychophysiological stress, elevated intraocular pressure, and acute closed-angle glaucoma. American Journal of Optometry and Physiological Optics, 64, 866–870.
    1. Silverstein, S.M. & Rosen, R. (2015). Schizophrenia and the eye. Schizophrenia Research. Cognition, 2, 46–55.
    1. Sossi, N. & Anderson, D.R. (1983). Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Effect of arterial hypertension induced by angiotensin I. Archives in Ophthalmology, 101, 94–97.
    1. Stein, J. (2014). Dyslexia: The Role of Vision and Visual Attention. Current Developmental Disorders Reports, 1, 267–280.
    1. Stevens, G.A. , White, R.A. , Flaxman, S.R. , Price, H. , Jonas, J.B. , Keeffe, J. , Leasher, J. , Naidoo, K. , Pesudovs, K. , Resnikoff, S. , Taylor, H. & Bourne, R.R.A. (2013). Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990-2010. Ophthalmology, 120, 2377–2384.
    1. Stew, W.C. (1997). Chronic Open-angle Glaucoma and Lifestyle. Progress in Retinal and Eye Research, 16, 567–590.
    1. Tan, C.S. , Sabel, B.A. , Goh, K.Y. (2006). Visual hallucinations during visual recovery after central retinal artery occlusion. Arch Neurol 63, 598–600.
    1. Tang, Y.-Y. , Holzel, B. & Posner, M. (2015). The neuroscience of mindfulness meditation. Nature Review Neuroscience, 16, 213–225.
    1. Tao, Y. , Chen, T. , Liu, Z.Y. , Wang, L.Q. , Xu, W.W. , Qin, L.M. , Peng, G.H. & Yi-Fei, H. (2016). Topographic Quantification of the Transcorneal Electrical Stimulation (TES)-Induced Protective Effects on N-Methyl-N-Nitrosourea-Treated Retinas. Investigative Ophthalmology and Visual Sciences, 57, 4614–4624.
    1. Uhlhaas, P.J. & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and patho-physiology. Neuron, 52, 155–168.
    1. van Arb, M. , Gompper, B. , Meyer, A.H. , Stutz, E.Z. , Orgül, S. , Flammer, J. & Kräuchi, K. (2009). Relationship between gender role, anger expression, thermal discomfort and sleep onset latency in women. BioPsychoSocial Medicine, 3, 11.
    1. Wang, J. , Li, T. , Sabel, B.A. , Chen, Z. , Wen, H. , Li, J. , Xie, X. , Yang, D. , Chen, W. , Wang, N. , Xian, J. & He, H. (2016). Structural brain alterations in primary open angle glaucoma: A 3T MRI study. Science Reports, 6, 18969.
    1. Whiting, P. , Kerby, J. , Coffey, P. , da Cruz, L. & McKernan, R. (2015). Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 370, 20140375.
    1. WHO Fact Sheet. Visual impairment and blindness. Fact Sheet N 282, updated August 2014.
    1. Williams, M.E. , Fink, C. , Zamora, I. & Borchert, M. (2014). Autism assessment in children with optic nerve hypoplasia and other vision impairments. Developmental Medicine and Child Neurology, 56, 66–72.
    1. Winterson, B.J. & Collewijn, H. (1976). Microsaccades during finely guided visuomotor tasks. Vision Research, 16, 1387–1390.
    1. Wostyn, P. , Audenaert, K. & de Deyn, P.P. (2010). Alzheimer’s disease: Cerebral glaucoma? Medical Hypotheses, 74, 973–977.
    1. Yang, D. , Fu, J. , Hou, R. , Liu, K. , Jonas, J.B. , Wang, H. , Chen, W. , Li, Z. , Sang, J. , Zhang, Z. , Liu, S. , Cao, Y. , Xie, X. , Ren, R. , Lu, Q. , Weinreb, R.N. & Wang, N. (2014). Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Investigative Ophthalmology and Visual Sciences, 55, 3067–3073.
    1. Yeghiazaryan, K. , Flammer, J. , Orgül, S. , Wunderlich, K. & Golubnitschaja, O. (2009). Vasospastic individuals demonstrate significant similarity to glaucoma patients as revealed by gene expression profiling in circulating leukocytes. Molecular Vision, 15, 2339–2348.
    1. Yin, H. , Yin, H. , Zhang, W. , Miao, Q. , Qin, Z. , Guo, S. , Fu, Q. , Ma, J. , Wu, F. , Yin, J. , Yang, Y. & Fang, X. (2016). Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression. Brain Research, 1650, 10–20.
    1. Yu, L. , Xie, B. , Yin, X. , Liang, M. , Evans, A.C. , Wang, J. & Dai, C. (2013). Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PLoS One, 8, e73208.
    1. Yücel, Y. (2013). Central nervous system changes in glaucoma. Journal of Glaucoma, 22, S24–25.
    1. Zhang, X. , Kedar, S. , Lynn, M.J. , Newman, N.J. & Biousse, V. (2006). Natural history of homonymous hemianopia. Neurology, 66, 901–905.
    1. Zhou, W.T. , Ni, Y.Q. , Jin, Z.B. , Zhang, M. , Wu, J.H. , Zhu, Y. , Xu, G.Z. & Gan, D.K. (2012). Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Müller cells. Experimental Neurology, 238, 192–208.

Source: PubMed

3
S'abonner