Recurrent differentiated thyroid cancer: towards personalized treatment based on evaluation of tumor characteristics with PET (THYROPET Study): study protocol of a multicenter observational cohort study

Jakob W Kist, Bart de Keizer, Marcel P M Stokkel, Otto S Hoekstra, Wouter V Vogel, THYROPET study group, Jakob W Kist, Bart de Keizer, Marcel P M Stokkel, Otto S Hoekstra, Wouter V Vogel, THYROPET study group

Abstract

Background: After initial treatment of differentiated thyroid carcinoma (DTC) patients are followed with thyroglobulin (Tg) measurements to detect recurrences. In case of elevated levels of Tg and negative neck ultrasonography, patients are treated 'blindly' with Iodine-131 (131I). However, in up to 50% of patients, the post-therapy scan reveals no 131I-targeting of tumor lesions. Such patients derive no benefit from the blind therapy but are exposed to its toxicity. Alternatively, iodine-124 (124I) Positron Emission Tomography/Computed Tomography (PET/CT) has become available to visualize DTC lesions and without toxicity. In addition to this, 18F-fluorodeoxyglucose (18F-FDG) PET/CT detects the recurrent DTC phenotype, which lost the capacity to accumulate iodine. Taken together, the combination of 124I and 18F-FDG PET/CT has potential to stratify patients for treatment with 131I.

Methods/design: In a multicenter prospective observational cohort study the hypothesis that the combination of 124I and 18F-FDG PET/CT can avoid futile 131I treatments in patients planned for 'blind' therapy with 131I, is tested.One hundred patients planned for 131I undergo both 124I and 18F-FDG PET/CT after rhTSH stimulation. Independent of the outcome of the scans, all patients will subsequently receive, after thyroid hormone withdrawal, the 131I therapy. The post 131I therapeutic scintigraphy is compared with the outcome of the 124I and 18F-FDG PET/CT in order to evaluate the diagnostic value of the combined PET modalities.This study primary aims to reduce the number of futile 131I therapies. Secondary aims are the nationwide introduction of 124I PET/CT by a quality assurance and quality control (QA/QC) program, to correlate imaging outcome with histopathological features, to compare 124I PET/CT after rhTSH and after withdrawal of thyroid hormone, and to compare 124I and 131I dosimetry.

Discussion: This study aims to evaluate the potential value of the combination of 124I and 18F-FDG PET/CT in the prevention of futile 131I therapies in patients with biochemically suspected recurrence of DTC. To our best knowledge no studies addressed this in a prospective cohort of patients. This is of great clinical importance as a futile 131I is a costly treatment associated with morbidity and therefore should be restricted to those likely to benefit from this treatment.

Trial registration: Clinicaltrials.gov identifier: NCT01641679.

Figures

Figure 1
Figure 1
Images from two different patients scanned with both 124I and 18F-FDG PET/CT. The 124I PET/CT of patient 1 (a) shows multiple 124I negative pulmonary nodules, which are evidently 18F-FDG positive (b). The thoracic wall lesion of patient 2 is clearly 124I avid (c) and showing no uptake on the 18F-FDG PET/CT (d).
Figure 2
Figure 2
Flow chart THYROPET study. †Only in selected centers; if allowed according to local radiation safety regulations; *if available in center; # 124I and 18F-FDG PET/CT only if pre-therapy scan was positive.

References

    1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300. doi: 10.3322/caac.20073.
    1. Schvartz C, Bonnetain F, Dabakuyo S, Gauthier M, Cueff A, Fieffé S, Pochart J-M, Cochet I, Crevisy E, Dalac A, Papathanassiou D, Toubeau M. Impact on overall survival of radioactive iodine in low-risk differentiated thyroid cancer patients. J Clin Endocrinol Metab. 2012;97:1526–1535. doi: 10.1210/jc.2011-2512.
    1. Welsh L, Powell C, Pratt B, Harrington K, Nutting C, Harmer C, Newbold K. Long-term outcomes following low-dose radioiodide ablation for differentiated thyroid cancer. J Clin Endocrinol Metab. 2013;98:1819–1825. doi: 10.1210/jc.2013-1197.
    1. Shaha AR. Recurrent differentiated thyroid cancer. Endocr Pract. 2012;18:600–603. doi: 10.4158/.
    1. Schlumberger M, Challeton C, De Vathaire F, Travagli JP, Gardet P, Lumbroso JD, Francese C, Fontaine F, Ricard M, Parmentier C. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.
    1. Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–1463. doi: 10.1210/jcem.86.4.7407.
    1. Husson O, Haak HR, Oranje WA, Mols F, Reemst PHM, van de Poll-Franse LV. Health-related quality of life among thyroid cancer survivors: a systematic review. Clin Endocrinol (Oxf) 2011;75:544–554. doi: 10.1111/j.1365-2265.2011.04114.x.
    1. The SEER cancer statistics review 1975–2010. .
    1. Francis Z, Schlumberger M. Serum thyroglobulin determination in thyroid cancer patients. Best Pract Res Clin Endocrinol Metab. 2008;22:1039–1046. doi: 10.1016/j.beem.2008.09.015.
    1. Bachelot A, Cailleux AF, Klain M, Baudin E, Ricard M, Bellon N, Caillou B, Travagli JP, Schlumberger M. Relationship between tumor burden and serum thyroglobulin level in patients with papillary and follicular thyroid carcinoma. Thyroid. 2002;12:707–711. doi: 10.1089/105072502760258686.
    1. Demers LM, Spencer CA. Laboratory medicine practice guidelines: laboratory support for the diagnosis and monitoring of thyroid disease. Washington, DC: National Academy of Clinical Biochemistry; 2002. pp. 1–125. .
    1. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, Cooper DS, Graham KE, Braverman LE, Skarulis MC, Davies TF, DeGroot LJ, Mazzaferri EL, Daniels GH, Ross DS, Luster M, Samuels MH, Becker DV, Maxon HR, Cavalieri RR, Spencer CA, McEllin K, Weintraub BD, Ridgway EC. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84:3877–3885.
    1. Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, Haugen BR, Sherman SI, Cooper DS, Braunstein GD, Lee S, Davies TF, Arafah BM, Ladenson PW, Pinchera A. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:1433–1441. doi: 10.1210/jc.2002-021702.
    1. Castro MR, Bergert ER, Goellner JR, Hay ID, Morris JC. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab. 2001;86:5627–5632. doi: 10.1210/jcem.86.11.8048.
    1. Dadachova E, Carrasco N. The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med. 2004;34:23–31. doi: 10.1053/j.semnuclmed.2003.09.004.
    1. Filetti S, Bidart JM, Arturi F, Caillou B, Russo D, Schlumberger M. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol. 1999;141:443–457. doi: 10.1530/eje.0.1410443.
    1. de Meer SG, Vriens MR, Zelissen PM, Borel Rinkes IH, de Keizer B. The role of routine diagnostic radioiodine whole-body scintigraphy in patients with high-risk differentiated thyroid cancer. J Nucl Med. 2011;52:56–59. doi: 10.2967/jnumed.110.080697.
    1. Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, Molinaro E, Pinchera A. Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab. 2001;86:4092–4097. doi: 10.1210/jcem.86.9.7831.
    1. Cailleux AF, Baudin E, Travagli JP, Ricard M, Schlumberger M. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J Clin Endocrinol Metab. 2000;85:175–178. doi: 10.1210/jcem.85.1.6310.
    1. Pacini F, Capezzone M, Elisei R, Ceccarelli C, Taddei D, Pinchera A. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 2002;87:1499–1501. doi: 10.1210/jcem.87.4.8274.
    1. Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C, Lippi F, Taddei D, Grasso L, Pinchera A. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668–3673. doi: 10.1210/jc.2002-021925.
    1. Frasoldati A, Pesenti M, Gallo M, Caroggio A, Salvo D, Valcavi R. Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer. 2003;97:90–96. doi: 10.1002/cncr.11031.
    1. Torlontano M, Crocetti U, D'Aloiso L, Bonfitto N, Di Giorgio A, Modoni S, Valle G, Frusciante V, Bisceglia M, Filetti S, Schlumberger M, Trischitta V. Serum thyroglobulin and 131I whole body scan after recombinant human TSH stimulation in the follow-up of low-risk patients with differentiated thyroid cancer. Eur J Endocrinol. 2003;148:19–24. doi: 10.1530/eje.0.1480019.
    1. Schlumberger M, Mancusi F, Baudin E, Pacini F. 131I therapy for elevated thyroglobulin levels. Thyroid. 1997;7:273–276. doi: 10.1089/thy.1997.7.273.
    1. de Keizer B, Koppeschaar HP, Zelissen PM, Lips CJ, van Rijk PP, van Dijk A, de Klerk JM. Efficacy of high therapeutic doses of iodine-131 in patients with differentiated thyroid cancer and detectable serum thyroglobulin. Eur J Nucl Med. 2001;28:198–202. doi: 10.1007/s002590000443.
    1. Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, Pinchera A. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–1891.
    1. Pineda JD, Lee T, Ain K, Reynolds JC, Robbins J. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–1492.
    1. Pachucki J, Burmeister LA. Evaluation and treatment of persistent thyroglobulinemia in patients with well-differentiated thyroid cancer. Eur J Endocrinol. 1997;137:254–261. doi: 10.1530/eje.0.1370254.
    1. Ma C, Xie J, Kuang A. Is empiric 131I therapy justified for patients with positive thyroglobulin and negative 131I whole-body scanning results? J Nucl Med. 2005;46:1164–1170.
    1. van Tol KM, Jager PL, de Vries EGE, Piers DA, Boezen HM, Sluiter WJ, Dullaart RPF, Links TP. Outcome in patients with differentiated thyroid cancer with negative diagnostic whole-body scanning and detectable stimulated thyroglobulin. Eur J Endocrinol. 2003;148:589–596. doi: 10.1530/eje.0.1480589.
    1. Sawka AM, Thabane L, Parlea L, Ibrahim-Zada I, Tsang RW, Brierley JD, Straus S, Ezzat S, Goldstein DP. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19:451–457. doi: 10.1089/thy.2008.0392.
    1. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The Risk of second primary malignancies up to three decades after the treatment of differentiated Thyroid Cancer. J Clin Endocrinol Metab. 2008;93:504–515. doi: 10.1210/jc.2007-1154.
    1. Schroeder PR. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab. 2005;91:878–884.
    1. Luster M, Felbinger R, Dietlein M, Reiners C. Thyroid hormone withdrawal in patients with differentiated thyroid carcinoma: a one hundred thirty-patient pilot survey on consequences of hypothyroidism and a pharmacoeconomic comparison to recombinant thyrotropin administration. Thyroid. 2005;15:1147–1155. doi: 10.1089/thy.2005.15.1147.
    1. Dow KH, Ferrell BR, Anello C. Quality-of-life changes in patients with thyroid cancer after withdrawal of thyroid hormone therapy. Thyroid. 1997;7:613–619. doi: 10.1089/thy.1997.7.613.
    1. Bianchi GP, Zaccheroni V, Solaroli E, Vescini F, Cerutti R, Zoli M, Marchesini G. Health-related quality of life in patients with thyroid disorders. Qual Life Res. 2004;13:45–54.
    1. Botella-Carretero JI, Galán JM, Caballero C, Sancho J, Escobar-Morreale HF. Quality of life and psychometric functionality in patients with differentiated thyroid carcinoma. Endocr Relat Cancer. 2003;10:601–610. doi: 10.1677/erc.0.0100601.
    1. Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Görges R, Müller SP, Bockisch A, Debatin JF, Brandau W. Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol. 2004;14:2092–2098. doi: 10.1007/s00330-004-2350-0.
    1. Lubberink M, Abdul Fatah S, Brans B, Hoekstra OS, Teule GJJ. The role of (124)I-PET in diagnosis and treatment of thyroid carcinoma. Q J Nucl Med Mol Imaging. 2008;52:30–36.
    1. Lee J, Nah KY, Kim RM, Oh Y-J, An Y-S, Yoon J-K, An GI, Choi TH, Cheon GJ, Soh E-Y, Chung WY. Effectiveness of [124I]-PET/CT and [18F]-FDG-PET/CT for Localizing Recurrence in Patients with Differentiated Thyroid Carcinoma. J Korean Med Sci. 2012;27:1019. doi: 10.3346/jkms.2012.27.9.1019.
    1. Van Nostrand D, Moreau S, Bandaru VV, Atkins F, Chennupati S, Mete M, Burman K, Wartofsky L. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20:879–883. doi: 10.1089/thy.2009.0430.
    1. Lubberink M, van Schie A, de Jong HWAM, van Dongen GAMS, Teule GJJ. Acquisition settings for PET of 124I administered simultaneously with therapeutic amounts of 131I. J Nucl Med. 2006;47:1375–1381.
    1. Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, Bockisch A. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46:121–128.
    1. Rivera M, Ghossein RA, Schoder H, Gomez D, Larson SM, Tuttle RM. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113:48–56. doi: 10.1002/cncr.23515.
    1. Alzahrani AS, Al-Zahrani AS, Abouzied M-EM, Salam SA, Mohamed G, Rifai A, Sugair Al A, Amin T. The role of F-18-fluorodeoxyglucose positron emission tomography in the postoperative evaluation of differentiated thyroid cancer. Eur J Endocrinol. 2008;158:683–689. doi: 10.1530/EJE-07-0903.
    1. Mirallié E, Guillan T, Bridji B, Resche I, Rousseau C, Ansquer C, Bodet-Milin C, Curtet C, Carnaille B, Murat A, Charbonnel B, Kraeber-Bodéré F. Therapeutic impact of 18FDG-PET/CT in the management of iodine-negative recurrence of differentiated thyroid carcinoma. Surgery. 2007;142:952–958. doi: 10.1016/j.surg.2007.09.015. discussion 952–8.
    1. Frilling A, Tecklenborg K, Görges R, Weber F, Clausen M, Broelsch EC. Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg. 2001;234:804–811. doi: 10.1097/00000658-200112000-00012.
    1. Brose MS, Nutting CM, Sherman SI, Shong YK, Smit JWA, Reike G, Chung J, Kalmus J, Kappeler C, Schlumberger M. Rationale and design of decision: a double-blind, randomized, placebo-controlled phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer. BMC Cancer. 2011;11:349. doi: 10.1186/1471-2407-11-349.
    1. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET Dosimetry protocol for radioiodine therapy of differentiated Thyroid Cancer. J Nucl Med. 2008;49:1017–1023. doi: 10.2967/jnumed.107.047159.
    1. Kim M-H, Ko SH, Bae JS, Lee SH, Jung CK, Lim D-J, Baek KH, Kim SH, Lee JM, Kang MI, Cha BY. Non-FDG-avid primary papillary thyroid carcinoma may not differ from FDG-avid papillary thyroid carcinoma. Thyroid. 2013;23:1452–1460. doi: 10.1089/thy.2013.0051.
    1. Hooft L, van der Veldt AAM, van Diest PJ, Hoekstra OS, Berkhof J, Teule GJJ, Molthoff CFM. [18F]fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase i expression in the primary tumor. J Clin Endocrinol Metab. 2005;90:328–334. doi: 10.1210/jc.2004-0779.
    1. Freudenberg LS, Antoch G, Frilling A, Jentzen W, Rosenbaum SJ, Kühl H, Bockisch A, Görges R. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35:950–957. doi: 10.1007/s00259-007-0634-8.
    1. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJG, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EFI, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2009;37:181–200.
    1. Boellaard R, Oyen WJG, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, Arends B, Verzijlbergen FJ, Zijlstra J, Paans AM, Comans EFI, Pruim J. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–2333. doi: 10.1007/s00259-008-0874-2.

Source: PubMed

3
S'abonner