Effect of photobiomodulation combined with physical therapy on functional performance in children with myelomeningocele: A protocol randomized clinical blind study

Tamiris Silva, Juliana Roque de Queiroz, Karina Helga Leal Turcio, Daysi da Cruz Tobelem, Tamires Ribeiro Araújo, Kevelin Siqueira Lira Coutinho, Maria Cristina Chavantes, Anna Carolina Ratto Tempestini Horliana, Alessandro Melo Deana, Daniela de Fátima Teixeira da Silva, Paula Midori Castelo, Kristianne Porta Santos Fernandes, Lara Jansiski Motta, Raquel Agnelli Mesquita-Ferrari, Sandra Kalil Bussadori, Tamiris Silva, Juliana Roque de Queiroz, Karina Helga Leal Turcio, Daysi da Cruz Tobelem, Tamires Ribeiro Araújo, Kevelin Siqueira Lira Coutinho, Maria Cristina Chavantes, Anna Carolina Ratto Tempestini Horliana, Alessandro Melo Deana, Daniela de Fátima Teixeira da Silva, Paula Midori Castelo, Kristianne Porta Santos Fernandes, Lara Jansiski Motta, Raquel Agnelli Mesquita-Ferrari, Sandra Kalil Bussadori

Abstract

Introduction: Myelomeningocele is a severe type of spina bifida, resulting from improper closure of the neural tube. This condition drastically affects the structures of the spinal cord resulting in deficiencies. The combination of these deficiencies results in an overall decrease in mobility and functional participation amongst this population. Physiotherapy plays an essential role in rehabilitating people with MMC. The current literature shows that resources such as photobiomodulation (PBM) may support the rehabilitation of neurological conditions. The aim of the proposed study is to evaluate the effects of photobiomodulation (PBM) combined with physical therapy on functional performance in children with low lumbosacral myelomeningocele.

Materials and methods: This is a protocol randomized clinical blind study, that will include 30 individuals of both sexes, aged between 5 to 8 years, diagnosed with low and sacral lumbar myelomeningocele and capable of performing the sit-to-stand task. The participants will be randomly assigned into two treatment groups: PBM + physiotherapeutic exercises and sham PBM + physiotherapeutic exercises. Irradiation will be carried out with light emitting diode (LED) at a wavelength of 850 nm, energy of 25 J per point, 50 seconds per point and a power of 200 mW. The same device will be used in the placebo group but will not emit light. Muscle activity will be assessed using a portable electromyograph (BTS Engineering) and the sit-to-stand task will be performed as a measure of functioning. Electrodes will be positioned on the lateral gastrocnemius, tibialis anterior and rectus femoris muscles. The Pediatric Evaluation of Disability Inventory will be used to assess functional independence. Quality of life will be assessed using the Child Health Questionnaire-Parent Form 50. Changes in participation will be assessed using the Participation and Environment Measure for Children and Youth. The data will be analyzed with the aid of GraphPad PRISM.

Discussion: The results of this study can contribute to a better understanding of the effectiveness of PBM on functioning and quality of life in children with myelomeningocele.

Clinical trial registration: ClinicalTrials.gov Identifier: NCT04425330.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Participant positioning for irradiation.
Fig 1. Participant positioning for irradiation.
Fig 2. Functional training.
Fig 2. Functional training.
Fig 3. SPIRIT statement.
Fig 3. SPIRIT statement.

References

    1. Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina bifida. Nat Rev Dis Prim. 2015;1:1–45. doi: 10.1038/nrdp.2015.7
    1. Saadai P, Nout YS, Encinas J, Wang A, Downing TL, Beattie MS, et al.. Prenatal repair of myelomeningocele with aligned nanofibrous scaffolds—A pilot study in sheep. J Pediatr Surg [Internet]. 2011;46(12):2279–83. Available from: doi: 10.1016/j.jpedsurg.2011.09.014
    1. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, et al.. Astrocyte scar formation aids CNS axon regeneration. Nature. 2016;532(7598):195–200. doi: 10.1038/nature17623
    1. Aizawa CYP, Morales MP, Lundberg C, Moura MCDS de, Pinto FCG, Voos MC, et al.. Conventional physical therapy and physical therapy based on reflex stimulation showed similar results in children with myelomeningocele. Arq Neuropsiquiatr. 2017;75(3):160–6. doi: 10.1590/0004-282X20170009
    1. Javad T Hashmi, Ying-Ying Huang, Bushra Z Osmani, Sulbha K Sharma, Margaret A Naeser MRH. Role of Low-Level Laser Therapy in Neurorehabilitation. PM R. 2010;2(12 Suppl 2):S292–S305.
    1. Freitas LF De Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. doi: 10.1109/JSTQE.2016.2561201
    1. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low-level laser therapy in neurorehabilitation. PM R. 2010;2(2 Suppl 2):S292–305. doi: 10.1016/j.pmrj.2010.10.013
    1. Heiskanen V HM. Photobiomodulation: Lasers vs Light Emitting Diodes? Photochem Photobiol Sci. 2018;31;18(1):2.
    1. Calderhead RG. REVIEW ARTICLE THE PHOTOBIOLOGICAL BASICS BEHIND LIGHT-EMITTING DIODE (LED) PHOTOTHERAPY. Laser Ther. 2007;16.2:97–108.
    1. Wong-riley MTT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al.. Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins. J Biol Chem. 2005;280(6):4761–71. doi: 10.1074/jbc.M409650200
    1. Holanda VM, Chavantes ÃMC, Wu X, Anders JJ. The Mechanistic Basis for Photobiomodulation Therapy of Neuropathic Pain by Near Infrared Laser Light. Lasers Surg Med. 2017;49(5):516–24. doi: 10.1002/lsm.22628
    1. Veronez S, Assis L, Campo P Del, Oliveira F De, Castro G De, Claudia A, et al.. Effects of different fluences of low-level laser therapy in an experimental model of spinal cord injury in rats. Lasers Med Sci. 2016;32(2):343–9. doi: 10.1007/s10103-016-2120-7
    1. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, et al.. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med. 2005;36(3):171–85. doi: 10.1002/lsm.20143
    1. da Silva FC, Gomes AO, da Costa Palácio PR, Politti F, de Fátima Teixeira da Silva D, Mesquita-Ferrari RA, et al.. Photobiomodulation improves motor response in patients with spinal cord injury submitted to electromyographic evaluation: randomized clinical trial. Lasers Med Sci. 2018;33(4):883–90. doi: 10.1007/s10103-018-2447-3
    1. Kleim JA JT. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–39. doi: 10.1044/1092-4388(2008/018)
    1. Luft AR. Rehabilitation and Plasticity. Front Neurol Neurosci. 2013;32:88–94. doi: 10.1159/000348879
    1. Vulpen LF Van, Groot S De, Rameckers E, Becher JG, Dallmeijer AJ. Improved Walking Capacity and Muscle Strength After Functional Power-Training in Young Children With Cerebral Palsy. Neurorehabil Neural Repair. 2017;31(9):827. doi: 10.1177/1545968317723750
    1. Blundell SW, Shepherd RB, Dean CM, Adams RD, Cahill BM. Functional strength training in cerebral palsy: a pilot study of a group circuit training class for children aged 4–8 years. 2003;17(1):48–5.
    1. SA ES. Trunk endurance and gait changes after core stability training in children with hemiplegic cerebral palsy: A randomized controlled trial un co rre ct ed pr oo f v er si un co rre ct ed pr oo. J Back Musculoskelet Rehabil. 2018;31(6):1159. doi: 10.3233/BMR-181123
    1. Steinhart S, Kornitzer E, Baron AB, Wever C, Shoshan L, Katz-Leurer M. Independence in self-care activities in children with myelomeningocele: exploring factors based on the International Classification of Function model. Disabil Rehabil. 2018;40(1):62–8. doi: 10.1080/09638288.2016.1243158
    1. Camargos ACR, Lacerda TTB de, Barros TV, Silva GC da, Parreiras JT, Vidal TH de J. Relationship between functional independence and quality of life in cerebral palsy. Fisioter em Mov. 2012;25(1):83–92.
    1. Machado CSM, Ruperto N, Silva CHM, Ferriani VPL, Roscoe I, Campos LMA, et al.. The Brazilian version of the Childhood Health Assessment Questionnaire (CHAQ) and the Child Health Questionnaire (CHQ). Clin Exp Rheumatol. 2001;19(23):25–9.
    1. Bakaniene I, Prasauskiene A, Vaiciene-Magistris N. Health-related quality of life in children with myelomeningocele: a systematic review of the literature. Child Care Health Dev. 2016;42(5):625–43. doi: 10.1111/cch.12367
    1. Coster W, Law M, Bedell G, Khetani M, Cousins M, Teplicky R. Development of the participation and environment measure for children and youth: Conceptual basis. Disabil Rehabil. 2012;34(3):238–46. doi: 10.3109/09638288.2011.603017
    1. Silva Filho JA da, Cazeiro APM, Campos AC de, Longo E. Young Children’s Participation and Environment Measure (YC-PEM): translate and cross-cultural adaptation for use in Brazil. Rev Ter Ocup da Univ São Paulo. 2019;30(3):140–9.
    1. Flores MB, Manella KJ, Ardolino EM, Flores MB, Manella KJ, Ardolino EM, et al.. Relationship between Movement Quality, Functional Ambulation Status, and Spatiotemporal Gait Parameters in Children with Myelomeningocele. Phys Occup Ther Pediatr. 2020;0(0):1–13.
    1. Neves A, Visicatto LP, Oliveira AB De, Adriana N, Ferreira C. Effects of Kinesio taping in rectus femoris activity and sit-to-stand movement in children with unilateral cerebral palsy: placebo-controlled, repeated-measure design. Disabil Rehabil. 2019;41(17):2049–59. doi: 10.1080/09638288.2018.1458912
    1. Hermens HJ. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–74. doi: 10.1016/s1050-6411(00)00027-4
    1. Pantall A, Teulier C UB. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele. Hum Mov Sci [Internet]. 2012;31(6):1670–87. Available from: . doi: 10.1016/j.humov.2012.04.003
    1. Rocque BG, Bishop ER, Scogin MA, Hopson BD, Arynchyna AA, Boddiford CJ, et al.. Assessing health-related quality of life in children with spina bifida. J Neurosurg Pediatr. 2015;15(February):144–9. doi: 10.3171/2014.10.PEDS1441
    1. Mapaisansin P, Suriyaamarit D, Boonyong S. Gait & Posture The development of sit-to-stand in typically developing children aged 4 to 12 years: Movement time, trunk and lower extremity joint angles, and joint moments. Gait Posture [Internet]. 2020;76(October 2019):14–21. Available from: doi: 10.1016/j.gaitpost.2019.10.030
    1. Gencer-Atalay K, Karadag-Saygi E, Mirzayeva S, Gokce I, Dagcinar A. Postural Stability in Children with High Sacral Level Spina Bifida: Deviations from a Control Group. J Mot Behav [Internet]. 2019;0(0):1–11. Available from: doi: 10.1080/00222895.2019.1676189
    1. Sütçü G, Yalçın Aİ, Ayvat E, Kılınç ÖO, Ayvat F, Doğan M, et al.. Electromyographic activity and kinematics of sit-to-stand in individuals with muscle disease. Neurol Sci. 2019;40(11):2311–8. doi: 10.1007/s10072-019-03974-5
    1. Krakauer JW, Carmichael ST, Corbett D. Getting Neurorehabilitation Right–What Can We Learn From Animal Models? Neurorehabil Neural Repair. 2015;26(November 2010):923–31.
    1. Houle JD, Côté MP. Axon regeneration and exercise-dependent plasticity after spinal cord injury. Ann N Y Acad Sci. 2013;1279(1):154–63. doi: 10.1111/nyas.12052
    1. Khan F, Amatya B, Galea MP, Gonzenbach R. Neurorehabilitation: applied neuroplasticity. 2016.
    1. Pauly M, Cremer R. Levels of Mobility in Children and Adolescents with Spina Bifida—Clinical Parameters Predicting Mobility and Maintenance of These Skills. Eur J Pediatr Surg. 2013;23(2):110–4. doi: 10.1055/s-0032-1324689
    1. Stark C, Semler O, Hoebing L. Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program. 2015;301–9.
    1. Marques A, Oliveira A, Ja C. Physical fitness and exercise training on individuals with Spina Bifida: A systematic review. Res Dev Disabil. 2014;35:1119–36. doi: 10.1016/j.ridd.2014.02.002
    1. da Silva FC, Silva T, Gomes AO, da Costa Palácio PR, Andreo L, Gonçalves MLL, et al.. Sensory and motor responses after photobiomodulation associated with physiotherapy in patients with incomplete spinal cord injury: clinical, randomized trial. Lasers Med Sci. 2020;35(8):1751–8. doi: 10.1007/s10103-020-02968-6
    1. Wu X, Dmitriev AE, Cardoso MJ, Viers-costello AG, Borke RC, Streeter J, et al.. 810 nm Wavelength Light: An Effective Therapy for Transected or Contused Rat Spinal Cord. Lasers Surg Med. 2009;41(1):36–41. doi: 10.1002/lsm.20729
    1. Paula AA, Nicolau RA, Lima M de O, Salgado MAC, Cogo JC. “Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury.” Lasers Med Sci. 2014;29(6):1849–59. doi: 10.1007/s10103-014-1586-4
    1. Salehpour F, Mahmoudi J, Kamari F, Sadigh-eteghad S, Rasta H, Hamblin MR, et al.. Brain Photobiomodulation Therapy: A Narrative Review. Mol Neurobiol. 2019;55(8):6601–36.

Source: PubMed

3
S'abonner