Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC)

Martin C J Kneyber, Daniele de Luca, Edoardo Calderini, Pierre-Henri Jarreau, Etienne Javouhey, Jesus Lopez-Herce, Jürg Hammer, Duncan Macrae, Dick G Markhorst, Alberto Medina, Marti Pons-Odena, Fabrizio Racca, Gerhard Wolf, Paolo Biban, Joe Brierley, Peter C Rimensberger, section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care, Martin C J Kneyber, Daniele de Luca, Edoardo Calderini, Pierre-Henri Jarreau, Etienne Javouhey, Jesus Lopez-Herce, Jürg Hammer, Duncan Macrae, Dick G Markhorst, Alberto Medina, Marti Pons-Odena, Fabrizio Racca, Gerhard Wolf, Paolo Biban, Joe Brierley, Peter C Rimensberger, section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care

Abstract

Purpose: Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children.

Methods: The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms.

Results: The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement.

Conclusions: These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

Keywords: Lung disease; Mechanical ventilation; Paediatrics; Physiology.

Conflict of interest statement

The authors declare the following conflicts of interest: M.K. received research funding from Stichting Beatrix Kinderziekenhuis, Fonds NutsOhra, ZonMW, UMC Groningen, TerMeulen Fonds/Royal Dutch Academy of Sciences and VU university medical center and serves as a consultant for and has received lecture fees from Vyaire. His institution received research technical support from Vyaire and Applied Biosignals. P.B. received honoraria from Abbvie, a travel grant from Maquet and served on an advisory board for Masimo. F.R. received consultancy fees from Vitalaire and Philips Respironics. P.R. received travel support from, Maquet, Acutronic, Nycomed, Philips, to run international teaching courses on mechanical ventilation. His institution received funding from Maquet, SLE, Stephan (unrestricted funding for clinical research) and from the European Union’s Framework Programme for Research and Innovation Horizon2020 (CRADL, Grant no. 668259). M.P. received honoraria from Air-liquide Healthcare and served as speaker for Fisher & Paykel and ResMed. His institution received disposable materials from Philips, ResMed and Fisher & Paykel. D.d.L. has received travel grants from Acutronic, consultancy fees from Vyaire and Acutronic and research technical support from Vyaire and Acutronic. P.-H.J. received consultancy fees from Air Liquide Medical System (finished in 2013), Abbvie as member of the French Board of Neonatologists, and punctual fees from CHIESI France for oral presentations. G.W., D.M., A.M., J.H., E.J., E.C., J.B. and J.L.H. have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Graphical simplification of the gaps in knowledge regarding paediatric mechanical ventilation as a function of disease trajectory when the patient is getting worse or is getting better
Fig. 2
Fig. 2
Graphical simplification of the recommendations on “ventilator mode”, “setting the ventilator” and “supportive measures” in the context of healthy lungs, obstructive airway, restrictive and mixed disease. It is also applicable for cardiac patients, patients with congenital of chronic disease and patients with lung hypoplasia syndromes. The colour gradient denotes increasing applicability of a specific consideration with increasing disease severity. Absence of the colour gradient indicates that there is no relationship with disease severity. The question mark associated with specific interventions highlights the uncertainties because of the lack of paediatric data. HFNC high flow nasal cannula, CPAP continuous positive airway pressure, NIV non-invasive ventilation, PIP peak inspiratory pressure, Pplat plateau pressure, Vt tidal volume, PEEP positive end-expiratory pressure, HFOV high-frequency oscillatory ventilation, ECLS extra-corporeal life support, NMB neuromuscular blockade
Fig. 3
Fig. 3
Graphical simplification of the recommendations on “monitoring” in the context of healthy lungs, obstructive airway, restrictive and mixed disease. It is also applicable for cardiac patients, patients with congenital of chronic disease and patients with lung hypoplasia syndromes. The colour gradient denotes increasing applicability of a specific consideration with increasing disease severity. Absence of the colour gradient indicates that there is no relationship with disease severity. The question mark associated with specific interventions highlights the uncertainties because of the lack of paediatric data. PIP peak inspiratory pressure, Pplat plateau pressure, Vt tidal volume, PEEP positive end-expiratory pressure, mPaw mean airway pressure, SvO2 venous oxygen saturation
Fig. 4
Fig. 4
Graphical simplification of the recommendations on “targets of oxygenation and ventilation” in the context of healthy lungs, obstructive airway, restrictive and mixed disease. It is also applicable for cardiac patients, patients with congenital of chronic disease and patients with lung hypoplasia syndromes. The colour gradient denotes increasing applicability of a specific consideration with increasing disease severity. Absence of the colour gradient indicates that there is no relationship with disease severity. The question mark associated with specific interventions highlights the uncertainties because of the lack of paediatric data. PALICC pediatric acute lung injury consensus conference

References

    1. Santschi M, Jouvet P, Leclerc F, Gauvin F, Newth CJ, Carroll CL, Flori H, Tasker RC, Rimensberger PC, Randolph AG, Investigators P. Pediatric Acute Lung I. Sepsis Investigators N. European Society of P. Neonatal Intensive C Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med. 2010;11:681–689. doi: 10.1097/PCC.0b013e3181d904c0.
    1. Duyndam A, Ista E, Houmes RJ, van Driel B, Reiss I, Tibboel D. Invasive ventilation modes in children: a systematic review and meta-analysis. Crit Care. 2011;15:R24. doi: 10.1186/cc9969.
    1. Chatburn RL, El-Khatib M, Mireles-Cabodevila E. A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care. 2014;59:1747–1763. doi: 10.4187/respcare.03057.
    1. Chatburn RL. Classification of ventilator modes: update and proposal for implementation. Respir Care. 2007;52:301–323.
    1. Fitch K, Bernstein SJ, Aguilar MD, Burnand B, LaCalle JR, Lazaro P, van het Loo M, McDonell J, Vader JP, Kahan JP. The RAND/UCLA appropriateness method user’s manual. Santa Monica: RAND; 2001.
    1. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW, Jr, Zaza S, Group GW Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. doi: 10.1136/bmj.328.7454.1490.
    1. Schwabbauer N, Berg B, Blumenstock G, Haap M, Hetzel J, Riessen R. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV) BMC Anesthesiol. 2014;14:66. doi: 10.1186/1471-2253-14-66.
    1. Pham TM, O’Malley L, Mayfield S, Martin S, Schibler A. The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol. 2015;50:713–720. doi: 10.1002/ppul.23060.
    1. Hough JL, Pham TM, Schibler A. Physiologic effect of high-flow nasal cannula in infants with bronchiolitis. Pediatr Crit Care Med. 2014;15:e214–e219. doi: 10.1097/PCC.0000000000000112.
    1. Mayfield S, Bogossian F, O’Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health. 2014;50:373–378. doi: 10.1111/jpc.12509.
    1. Mayfield S, Jauncey-Cooke J, Hough JL, Schibler A, Gibbons K, Bogossian F (2014) High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev: CD009850
    1. Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Cambonie G. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med. 2013;39:1088–1094. doi: 10.1007/s00134-013-2879-y.
    1. Rubin S, Ghuman A, Deakers T, Khemani R, Ross P, Newth CJ. Effort of breathing in children receiving high-flow nasal cannula. Pediatr Crit Care Med. 2014;15:1–6. doi: 10.1097/PCC.0000000000000011.
    1. Chisti MJ, Salam MA, Smith JH, Ahmed T, Pietroni MA, Shahunja KM, Shahid AS, Faruque AS, Ashraf H, Bardhan PK, Sharifuzzaman, Graham SM, Duke T. Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial. Lancet. 2015;386:1057–1065. doi: 10.1016/S0140-6736(15)60249-5.
    1. Kelly GS, Simon HK, Sturm JJ. High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care. 2013;29:888–892. doi: 10.1097/PEC.0b013e31829e7f2f.
    1. Kneyber MC. Question 1: Is there a role for high-flow nasal cannula oxygen therapy to prevent endotracheal intubation in children with viral bronchiolitis? Arch Dis Child. 2013;98:1018–1020. doi: 10.1136/archdischild-2013-304698.
    1. McKiernan C, Chua LC, Visintainer PF, Allen H. High flow nasal cannulae therapy in infants with bronchiolitis. J Pediatr. 2010;156:634–638. doi: 10.1016/j.jpeds.2009.10.039.
    1. Modesto IAV, Khemani RG, Medina A, Del Villar Guerra P, Molina Cambra A. Bayes to the rescue: continuous positive airway pressure has less mortality than high-flow oxygen. Pediatr Crit Care Med. 2017;18:e92–e99. doi: 10.1097/PCC.0000000000001055.
    1. Riese J, Fierce J, Riese A, Alverson BK. Effect of a hospital-wide high-flow nasal cannula protocol on clinical outcomes and resource utilization of bronchiolitis patients admitted to the PICU. Hosp Pediatr. 2015;5:613–618. doi: 10.1542/hpeds.2014-0220.
    1. Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, Hough JL. Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med. 2011;37:847–852. doi: 10.1007/s00134-011-2177-5.
    1. Wing R, James C, Maranda LS, Armsby CC. Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care. 2012;28:1117–1123. doi: 10.1097/PEC.0b013e31827122a9.
    1. Borckink I, Essouri S, Laurent M, Albers MJ, Burgerhof JG, Tissieres P, Kneyber MC. Infants with severe respiratory syncytial virus needed less ventilator time with nasal continuous airways pressure then invasive mechanical ventilation. Acta Paediatr. 2014;103:81–85. doi: 10.1111/apa.12428.
    1. Cambonie G, Milesi C, Jaber S, Amsallem F, Barbotte E, Picaud JC, Matecki S. Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med. 2008;34:1865–1872. doi: 10.1007/s00134-008-1201-x.
    1. Donlan M, Fontela PS, Puligandla PS. Use of continuous positive airway pressure (CPAP) in acute viral bronchiolitis: a systematic review. Pediatr Pulmonol. 2011;46:736–746. doi: 10.1002/ppul.21483.
    1. Essouri S, Durand P, Chevret L, Balu L, Devictor D, Fauroux B, Tissieres P. Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis. Intensive Care Med. 2011;37:2002–2007. doi: 10.1007/s00134-011-2372-4.
    1. Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Combonie G. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med. 2013;39:1088–1094. doi: 10.1007/s00134-013-2879-y.
    1. Milesi C, Matecki S, Jaber S, Mura T, Jacquot A, Pidoux O, Chautemps N, Novais AR, Combes C, Picaud JC, Cambonie G. 6 cmH2O continuous positive airway pressure versus conventional oxygen therapy in severe viral bronchiolitis: a randomized trial. Pediatr Pulmonol. 2013;48:45–51. doi: 10.1002/ppul.22533.
    1. Sinha IP, McBride AK, Smith R, Fernandes RM. CPAP and high-flow nasal cannula oxygen in bronchiolitis. Chest. 2015;148:810–823. doi: 10.1378/chest.14-1589.
    1. Fortenberry JD, Del Toro J, Jefferson LS, Evey L, Haase D. Management of pediatric acute hypoxemic respiratory insufficiency with bilevel positive pressure (BiPAP) nasal mask ventilation. Chest. 1995;108:1059–1064. doi: 10.1378/chest.108.4.1059.
    1. Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B. Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol. 2008;30:533–538. doi: 10.1097/MPH.0b013e3181754198.
    1. Schiller O, Schonfeld T, Yaniv I, Stein J, Kadmon G, Nahum E. Bi-level positive airway pressure ventilation in pediatric oncology patients with acute respiratory failure. J Intensive Care Med. 2009;24:383–388. doi: 10.1177/0885066609344956.
    1. Piastra M, De Luca D, Pietrini D, Pulitano S, D’Arrigo S, Mancino A, Conti G. Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35:1420–1427. doi: 10.1007/s00134-009-1558-5.
    1. Gupta P, Kuperstock JE, Hashmi S, Arnolde V, Gossett JM, Prodhan P, Venkataraman S, Roth SJ. Efficacy and predictors of success of noninvasive ventilation for prevention of extubation failure in critically ill children with heart disease. Pediatr Cardiol. 2013;34:964–977. doi: 10.1007/s00246-012-0590-3.
    1. Kovacikova L, Skrak P, Dobos D, Zahorec M. Noninvasive positive pressure ventilation in critically ill children with cardiac disease. Pediatr Cardiol. 2014;35:676–683. doi: 10.1007/s00246-013-0837-7.
    1. Chin K, Takahashi K, Ohmori K, Toru I, Matsumoto H, Niimi A, Doi H, Ikeda T, Nakahata T, Komeda M, Mishima M. Noninvasive ventilation for pediatric patients under 1 year of age after cardiac surgery. J Thorac Cardiovasc Surg. 2007;134:260–261. doi: 10.1016/j.jtcvs.2007.03.002.
    1. Fernandez Lafever S, Toledo B, Leiva M, Padron M, Balseiro M, Carrillo A, Lopez- Herce J. Non-invasive mechanical ventilation after heart surgery in children. BMC Pulm Med. 2016;16:167. doi: 10.1186/s12890-016-0334-x.
    1. Thill PJ, McGuire JK, Baden HP, Green TP, Checchia PA. Noninvasive positive-pressure ventilation in children with lower airway obstruction. Pediatr Crit Care Med. 2004;5:337–342. doi: 10.1097/01.PCC.0000128670.36435.83.
    1. Basnet S, Mander G, Andoh J, Klaska H, Verhulst S, Koirala J. Safety, efficacy, and tolerability of early initiation of noninvasive positive pressure ventilation in pediatric patients admitted with status asthmaticus: a pilot study. Pediatr Crit Care Med. 2012;13:393–398. doi: 10.1097/PCC.0b013e318238b07a.
    1. Piastra M, Antonelli M, Caresta E, Chiaretti A, Polidori G, Conti G. Noninvasive ventilation in childhood acute neuromuscular respiratory failure: a pilot study. Respiration. 2006;73:791–798. doi: 10.1159/000090777.
    1. Chen TH, Hsu JH, Wu JR, Dai ZK, Chen IC, Liang WC, Yang SN, Jong YJ. Combined noninvasive ventilation and mechanical in-exsufflator in the treatment of pediatric acute neuromuscular respiratory failure. Pediatr Pulmonol. 2014;49:589–596. doi: 10.1002/ppul.22827.
    1. Demaret P, Mulder A, Loeckx I, Trippaerts M, Lebrun F. Non-invasive ventilation is useful in paediatric intensive care units if children are appropriately selected and carefully monitored. Acta Paediatr. 2015;104:861–871. doi: 10.1111/apa.13057.
    1. Mayordomo-Colunga J, Medina A, Rey C, Concha A, Menendez S, Los Arcos M, Garcia I. Non invasive ventilation after extubation in paediatric patients: a preliminary study. BMC Pediatr. 2010;10:29. doi: 10.1186/1471-2431-10-29.
    1. Fioretto JR, Ribeiro CF, Carpi MF, Bonatto RC, Moraes MA, Fioretto EB, Fagundes DJ. Comparison between noninvasive mechanical ventilation and standard oxygen therapy in children up to 3 years old with respiratory failure after extubation: a pilot prospective randomized clinical study. Pediatr Crit Care Med. 2015;16:124–130. doi: 10.1097/PCC.0000000000000309.
    1. Yanez LJ, Yunge M, Emilfork M, Lapadula M, Alcantara A, Fernandez C, Lozano J, Contreras M, Conto L, Arevalo C, Gayan A, Hernandez F, Pedraza M, Feddersen M, Bejares M, Morales M, Mallea F, Glasinovic M, Cavada G. A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2008;9:484–489. doi: 10.1097/PCC.0b013e318184989f.
    1. Calderini E, Chidini G, Pelosi P. What are the current indications for noninvasive ventilation in children? Curr Opin Anaesthesiol. 2010;23:368–374. doi: 10.1097/ACO.0b013e328339507b.
    1. Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D. Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med. 2006;7:329–334. doi: 10.1097/01.PCC.0000225089.21176.0B.
    1. James CS, Hallewell CP, James DP, Wade A, Mok QQ. Predicting the success of non-invasive ventilation in preventing intubation and re-intubation in the paediatric intensive care unit. Intensive Care Med. 2011;37:1994–2001. doi: 10.1007/s00134-011-2386-y.
    1. Mayordomo-Colunga J, Medina A, Rey C, Diaz JJ, Concha A, Los Arcos M, Menendez S. Predictive factors of non invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med. 2009;35:527–536. doi: 10.1007/s00134-008-1346-7.
    1. Munoz-Bonet JI, Flor-Macian EM, Brines J, Rosello-Millet PM, Cruz Llopis M, Lopez-Prats JL, Castillo S. Predictive factors for the outcome of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2010;11:675–680. doi: 10.1097/PCC.0b013e3181d8e303.
    1. Piastra M, De Luca D, Marzano L, Stival E, Genovese O, Pietrini D, Conti G. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med. 2011;37:1510–1516. doi: 10.1007/s00134-011-2308-z.
    1. Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, Rocco M, Maviglia R, Pennisi MA, Gonzalez-Diaz G, Meduri GU. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007;35:18–25. doi: 10.1097/01.CCM.0000251821.44259.F3.
    1. Crulli B, Loron G, Nishisaki A, Harrington K, Essouri S, Emeriaud G. Safety of paediatric tracheal intubation after non-invasive ventilation failure. Pediatr Pulmonol. 2016;51:165–172. doi: 10.1002/ppul.23223.
    1. Bernet V, Hug MI, Frey B. Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med. 2005;6:660–664. doi: 10.1097/01.PCC.0000170612.16938.F6.
    1. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–S240. doi: 10.1097/01.CCM.0000155920.11893.37.
    1. Yehya N, Topjian AA, Thomas NJ, Friess SH. Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome. Pediatr Crit Care Med. 2014;15:e147–e156. doi: 10.1097/PCC.0000000000000069.
    1. Yehya N, Topjian AA, Lin R, Berg RA, Thomas NJ, Friess SH. High frequency oscillation and airway pressure release ventilation in pediatric respiratory failure. Pediatr Pulmonol. 2014;49:707–715. doi: 10.1002/ppul.22853.
    1. Walsh MA, Merat M, La Rotta G, Joshi P, Joshi V, Tran T, Jarvis S, Caldarone CA, Van Arsdell GS, Redington AN, Kavanagh BP. Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit Care Med. 2011;39:2599–2604. doi: 10.1097/CCM.0b013e318228297a.
    1. Krishnan J, Morrison W. Airway pressure release ventilation: a pediatric case series. Pediatr Pulmonol. 2007;42:83–88. doi: 10.1002/ppul.20550.
    1. de Carvalho WB, Kopelman BI, Gurgueira GL, Bonassa J. Airway pressure release in postoperative cardiac surgery in pediatric patients. Rev Assoc Med Bras. 2000;46:166–173. doi: 10.1590/S0104-42302000000200011.
    1. Medina A, Modesto-Alapont V, Lobete C, Vidal-Mico S, Alvarez-Caro F, Pons- Odena M, Mayordomo-Colunga J, Ibiza-Palacios E. Is pressure-regulated volume control mode appropriate for severely obstructed patients? J Crit Care. 2014;29:1041–1045. doi: 10.1016/j.jcrc.2014.07.006.
    1. Brenner B, Corbridge T, Kazzi A. Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. Proc Am Thorac Soc. 2009;6:371–379. doi: 10.1513/pats.P09ST4.
    1. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med. 1994;22:1530–1539. doi: 10.1097/00003246-199422100-00006.
    1. Gupta P, Green JW, Tang X, Gall CM, Gossett JM, Rice TB, Kacmarek RM, Wetzel RC. Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr. 2014;168(3):243–249. doi: 10.1001/jamapediatrics.2013.4463.
    1. Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, Curley MA, Investigators RS. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. a propensity score analysis. Am J Respir Crit Care Med. 2016;193:495–503. doi: 10.1164/rccm.201507-1381OC.
    1. Kneyber MC, van Heerde M, Markhorst DG. It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr. 2014;168:861. doi: 10.1001/jamapediatrics.2014.961.
    1. Rimensberger PC, Bachman TE. It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr. 2014;168:862–863. doi: 10.1001/jamapediatrics.2014.940.
    1. Essouri S, Emeriaud G, Jouvet P. It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr. 2014;168:861–862. doi: 10.1001/jamapediatrics.2014.937.
    1. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, Investigators OT. Canadian Critical Care Trials G High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805. doi: 10.1056/NEJMoa1215554.
    1. Kneyber MC, van Heerde M, Markhorst DG. Reflections on pediatric high- frequency oscillatory ventilation from a physiologic perspective. Respir Care. 2012;57:1496–1504. doi: 10.4187/respcare.01571.
    1. Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ. 2010;340:c2327. doi: 10.1136/bmj.c2327.
    1. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, Group OS High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–813. doi: 10.1056/NEJMoa1215716.
    1. Bojan M, Gioanni S, Mauriat P, Pouard P. High-frequency oscillatory ventilation and short-term outcome in neonates and infants undergoing cardiac surgery: a propensity score analysis. Crit Care. 2011;15:R259. doi: 10.1186/cc10521.
    1. Li S, Wang X, Li S, Yan J. High-frequency oscillatory ventilation for cardiac surgery children with severe acute respiratory distress syndrome. Pediatr Cardiol. 2013;34:1382–1388. doi: 10.1007/s00246-013-0655-y.
    1. Kornecki A, Shekerdemian LS, Adatia I, Bohn D. High-frequency oscillation in children after Fontan operation. Pediatr Crit Care Med. 2002;3:144–147. doi: 10.1097/00130478-200204000-00010.
    1. Duval EL, Leroy PL, Gemke RJ, van Vught AJ. High-frequency oscillatory ventilation in RSV bronchiolitis patients. Respir Med. 1999;93:435–440. doi: 10.1053/rmed.1999.0578.
    1. Duval EL, Markhorst DG, Gemke RJ, van Vught AJ. High-frequency oscillatory ventilation in pediatric patients. Neth J Med. 2000;56:177–185. doi: 10.1016/S0300-2977(00)00007-3.
    1. Duval ELIM, van Vught AJ. Status asthmaticus treated by high-frequency oscillatory ventilation. Pediatr Pulmonol. 2000;30:350–353. doi: 10.1002/1099-0496(200010)30:4<350::AID-PPUL13>;2-2.
    1. Kneyber MC, Plotz FB, Sibarani-Ponsen RD, Markhorst DG. High-frequency oscillatory ventilation (HFOV) facilitates CO2 elimination in small airway disease: the open airway concept. Respir Med. 2005;99:1459–1461. doi: 10.1016/j.rmed.2005.03.013.
    1. Davis DA, Russo PA, Greenspan JS, Speziali G, Spitzer A. High-frequency jet versus conventional ventilation in infants undergoing Blalock-Taussig shunts. Ann Thorac Surg. 1994;57:846–849. doi: 10.1016/0003-4975(94)90187-2.
    1. Kocis KC, Meliones JN, Dekeon MK, Callow LB, Lupinetti FM, Bove EL. High-frequency jet ventilation for respiratory failure after congenital heart surgery. Circulation. 1992;86:II127–II132.
    1. Meliones JN, Bove EL, Dekeon MK, Custer JR, Moler FW, Callow LR, Wilton NC, Rosen DB. High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation. 1991;84:III364–III368.
    1. Rizkalla NA, Dominick CL, Fitzgerald JC, Thomas NJ, Yehya N. High- frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure. J Crit Care. 2014;29(314):e311–e317.
    1. Cortiella J, Mlcak R, Herndon D. High frequency percussive ventilation in pediatric patients with inhalation injury. J Burn Care Rehabil. 1999;20:232–235. doi: 10.1097/00004630-199905000-00014.
    1. Yehya N, Dominick CL, Connelly JT, Davis DH, Minneci PC, Deans KJ, McCloskey JJ, Kilbaugh TJ. High-frequency percussive ventilation and bronchoscopy during extracorporeal life support in children. ASAIO J. 2014;60:424–428. doi: 10.1097/MAT.0000000000000088.
    1. Carman B, Cahill T, Warden G, McCall J. A prospective, randomized comparison of the Volume Diffusive Respirator vs conventional ventilation for ventilation of burned children. 2001 ABA paper. J Burn Care Rehabil. 2002;23:444–448. doi: 10.1097/00004630-200211000-00011.
    1. MacLaren G, Dodge-Khatami A, Dalton HJ, Writing C, MacLaren G, Dodge- Khatami A, Dalton HJ, Adachi I, Almodovar M, Annich G, Bartlett R, Bronicki R, Brown K, Butt W, Cooper D, Demuth M, D’Udekem Y, Fraser C, Guerguerian AM, Heard M, Horton S, Ichord R, Jaquiss R, Laussen P, Lequier L, Lou S, Marino B, McMullan M, Ogino M, Peek G, Pretre R, Rodefeld M, Schmidt A, Schwartz S, Shekerdemian L, Shime N, Sivarajan B, Stiller B, Thiagarajan R. Joint statement on mechanical circulatory support in children: a consensus review from the Pediatric Cardiac Intensive Care Society and Extracorporeal Life Support Organization. Pediatr Crit Care Med. 2013;14:S1–S2. doi: 10.1097/PCC.0b013e318292dc09.
    1. Blokpoel RG, Burgerhof JG, Markhorst DG, Kneyber MC. Patient–ventilator asynchrony during assisted ventilation in children. Pediatr Crit Care Med. 2016;17:e204–e211. doi: 10.1097/PCC.0000000000000669.
    1. Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Jaecklin T, Levy-Jamet Y, Tourneux P, Jolliet P, Rimensberger PC. Optimizing patient–ventilator synchrony during invasive ventilator assist in children and infants remains a difficult task. Pediatr Crit Care Med. 2013;14:e316–e325. doi: 10.1097/PCC.0b013e31828a8606.
    1. Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Levy-Jamet Y, Jaecklin T, Tourneux P, Jolliet P, Rimensberger PC. Patient-ventilator asynchrony during noninvasive pressure support ventilation and neurally adjusted ventilatory assist in infants and children. Pediatr Crit Care Med. 2013;14:e357–e364. doi: 10.1097/PCC.0b013e3182917922.
    1. de la Oliva P, Schuffelmann C, Gomez-Zamora A, Villar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med. 2012;38:838–846. doi: 10.1007/s00134-012-2535-y.
    1. Piastra M, De Luca D, Costa R, Pizza A, De Sanctis R, Marzano L, Biasucci D, Visconti F, Conti G. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: nested study. J Crit Care. 2014;29(312):e311–e315.
    1. Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care-a randomized controlled trial. Pediatr Pulmonol. 2015;50:55–62. doi: 10.1002/ppul.22995.
    1. Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41:242–255. doi: 10.1097/00000542-197409000-00006.
    1. Putensen C, Hering R, Muders T, Wrigge H. Assisted breathing is better in acute respiratory failure. Curr Opin Crit Care. 2005;11:63–68. doi: 10.1097/00075198-200502000-00010.
    1. Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12:13–18. doi: 10.1097/01.ccx.0000198994.37319.60.
    1. Petrof BJ, Hussain SN. Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care. 2016;22:67–72. doi: 10.1097/MCC.0000000000000272.
    1. Emeriaud G, Larouche A, Ducharme-Crevier L, Massicotte E, Flechelles O, Pellerin- Leblanc AA, Morneau S, Beck J, Jouvet P. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med. 2014;40:1718–1726. doi: 10.1007/s00134-014-3431-4.
    1. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Wilsterman ME, de Jager P, Blokpoel R, Frerichs I, Dijkstra SK, Albers MJ, Burgerhof JG, Markhorst DG, Kneyber MC. Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure. Ann Intensive Care. 2016;6:103. doi: 10.1186/s13613-016-0206-9.
    1. Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, Wilkins B. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med. 2007;8:317–323.
    1. Khemani RG, Conti D, Alonzo TA, Bart RD, III, Newth CJ. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35:1428–1437. doi: 10.1007/s00134-009-1527-z.
    1. Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171:995–1001. doi: 10.1164/rccm.200404-544OC.
    1. Panico FF, Troster EJ, Oliveira CS, Faria A, Lucena M, Joao PR, Saad ED, Foronda FA, Delgado AF, de Carvalho WB. Risk factors for mortality and outcomes in pediatric acute lung injury/acute respiratory distress syndrome. Pediatr Crit Care Med. 2015;16:e194–e200. doi: 10.1097/PCC.0000000000000490.
    1. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–355. doi: 10.1164/rccm.200710-1589OC.
    1. Chiumello D, Chidini G, Calderini E, Colombo A, Crimella F, Brioni M. Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome. Ann Intensive care. 2016;6:11. doi: 10.1186/s13613-016-0113-0.
    1. Rimensberger PC, Cheifetz IM, Pediatric Acute Lung Injury Consensus Conference G Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16:S51–S60. doi: 10.1097/PCC.0000000000000433.
    1. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. de Jager P, Burgerhof JG, van Heerde M, Albers MJ, Markhorst DG, Kneyber MC. Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies. Crit Care Med. 2014;42:2461–2472. doi: 10.1097/CCM.0000000000000546.
    1. Kneyber MC, Rimensberger PC. The need for and feasibility of a pediatric ventilation trial: reflections on a survey among pediatric intensivists. Pediatr Crit Care Med. 2012;13:632–638. doi: 10.1097/PCC.0b013e31824fbc37.
    1. Yu WL, Lu ZJ, Wang Y, Shi LP, Kuang FW, Qian SY, Zeng QY, Xie MH, Zhang GY, Zhuang DY, Fan XM, Sun B, Collaborative Study Group of Pediatric Respiratory F The epidemiology of acute respiratory distress syndrome in pediatric intensive care units in China. Intensive Care Med. 2009;35:136–143. doi: 10.1007/s00134-008-1254-x.
    1. Zhu YF, Xu F, Lu XL, Wang Y, Chen JL, Chao JX, Zhou XW, Zhang JH, Huang YZ, Yu WL, Xie MH, Yan CY, Lu ZJ, Sun B, Chinese Collaborative Study Group for Pediatric Hypoxemic Respiratory F Mortality and morbidity of acute hypoxemic respiratory failure and acute respiratory distress syndrome in infants and young children. Chin Med J. 2012;125:2265–2271.
    1. Albuali WH, Singh RN, Fraser DD, Seabrook JA, Kavanagh BP, Parshuram CS, Komecki A. Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med. 2007;8:324–330.
    1. Pulitano S, Mancino A, Pietrini D, Piastra M, De Rosa S, Tosi F, De Luca D, Conti G. Effects of positive end expiratory pressure (PEEP) on intracranial and cerebral perfusion pressure in pediatric neurosurgical patients. J Neurosurg Anesthesiol. 2013;25:330–334. doi: 10.1097/ANA.0b013e31828bac4d.
    1. von Ungern-Sternberg BS, Regli A, Schibler A, Hammer J, Frei FJ, Erb TO. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg. 2007;104:1364–1368. doi: 10.1213/01.ane.0000261503.29619.9c.
    1. Tusman G, Bohm SH, Tempra A, Melkun F, Garcia E, Turchetto E, Mulder PG, Lachmann B. Effects of recruitment maneuver on atelectasis in anesthetized children. Anesthesiology. 2003;98:14–22. doi: 10.1097/00000542-200301000-00006.
    1. Russell RI, Greenough A, Giffin F. The effect of variations in positive end expiratory pressure on gas exchange in ventilated children with liver disease. Eur J Pediatr. 1993;152:742–744. doi: 10.1007/BF01953990.
    1. Giffin F, Greenough A. Effect of positive end expiratory pressure and mean airway pressure on respiratory compliance and gas exchange in children with liver disease. Eur J Pediatr. 1994;153:28–33. doi: 10.1007/BF02000783.
    1. Ingaramo OA, Ngo T, Khemani RG, Newth CJ. Impact of positive end- expiratory pressure on cardiac index measured by ultrasound cardiac output monitor. Pediatr Crit Care Med. 2014;15:15–20. doi: 10.1097/PCC.0b013e3182976251.
    1. Khemani RG, Markovitz BP, Curley MA. Characteristics of children intubated and mechanically ventilated in 16 PICUs. Chest. 2009;136:765–771. doi: 10.1378/chest.09-0207.
    1. Paulson TE, Spear RM, Silva PD, Peterson BM. High-frequency pressure- control ventilation with high positive end-expiratory pressure in children with acute respiratory distress syndrome. J Pediatr. 1996;129:566–573. doi: 10.1016/S0022-3476(96)70122-1.
    1. Sivan Y, Deakers TW, Newth CJ. Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure. Pediatr Pulmonol. 1991;11:103–107. doi: 10.1002/ppul.1950110205.
    1. White MK, Galli SA, Chatburn RL, Blumer JL. Optimal positive end-expiratory pressure therapy in infants and children with acute respiratory failure. Pediatr Res. 1988;24:217–221. doi: 10.1203/00006450-198808000-00016.
    1. Graham AS, Chandrashekharaiah G, Citak A, Wetzel RC, Newth CJ. Positive end-expiratory pressure and pressure support in peripheral airways obstruction: work of breathing in intubated children. Intensive Care Med. 2007;33:120–127. doi: 10.1007/s00134-006-0445-6.
    1. Parrilla FJ, Moran I, Roche-Campo F, Mancebo J. Ventilatory strategies in obstructive lung disease. Semin Resp Crit Care Med. 2014;35:431–440. doi: 10.1055/s-0034-1382155.
    1. Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, Malhotra A, Velasco IT, Amato MB. Paradoxical responses to positive end- expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33:1519–1528. doi: 10.1097/01.CCM.0000168044.98844.30.
    1. Stather DR, Stewart TE. Clinical review: mechanical ventilation in severe asthma. Crit Care. 2005;9:581–587. doi: 10.1186/cc3733.
    1. Davis S, Jones M, Kisling J, Angelicchio C, Tepper RS. Effect of continuous positive airway pressure on forced expiratory flows in infants with tracheomalacia. Am J Respir Crit Care Med. 1998;158:148–152. doi: 10.1164/ajrccm.158.1.9711034.
    1. Essouri S, Nicot F, Clement A, Garabedian EN, Roger G, Lofaso F, Fauroux B. Noninvasive positive pressure ventilation in infants with upper airway obstruction: comparison of continuous and bilevel positive pressure. Intensive Care Med. 2005;31:574–580. doi: 10.1007/s00134-005-2568-6.
    1. Halbertsma FJ, Vaneker M, van der Hoeven JG. Use of recruitment maneuvers during mechanical ventilation in pediatric and neonatal intensive care units in the Netherlands. Intensive Care Med. 2007;33:1673–1674. doi: 10.1007/s00134-007-0581-7.
    1. Halbertsma FJ, van der Hoeven JG. Lung recruitment during mechanical positive pressure ventilation in the PICU: what can be learned from the literature? Anaesthesia. 2005;60:779–790. doi: 10.1111/j.1365-2044.2005.04187.x.
    1. Cruces P, Donoso A, Valenzuela J, Diaz F. Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol. 2013;48:1135–1143. doi: 10.1002/ppul.22729.
    1. Scohy TV, Bikker IG, Hofland J, de Jong PL, Bogers AJ, Gommers D. Alveolar recruitment strategy and PEEP improve oxygenation, dynamic compliance of respiratory system and end-expiratory lung volume in pediatric patients undergoing cardiac surgery for congenital heart disease. Paediatr Anaesth. 2009;19:1207–1212. doi: 10.1111/j.1460-9592.2009.03177.x.
    1. Boriosi JP, Sapru A, Hanson JH, Asselin J, Gildengorin G, Newman V, Sabato K, Flori HR. Efficacy and safety of lung recruitment in pediatric patients with acute lung injury. Pediatr Crit Care Med. 2011;12:431–436. doi: 10.1097/PCC.0b013e3181fe329d.
    1. Kheir JN, Walsh BK, Smallwood CD, Rettig JS, Thompson JE, Gomez-Laberge C, Wolf GK, Arnold JH. Comparison of 2 lung recruitment strategies in children with acute lung injury. Respir Care. 2013;58:1280–1290. doi: 10.4187/respcare.01808.
    1. Wolf GK, Gomez-Laberge C, Kheir JN, Zurakowski D, Walsh BK, Adler A, Arnold JH. Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr Crit Care Med. 2012;13:509–515. doi: 10.1097/PCC.0b013e318245579c.
    1. Boriosi JP, Cohen RA, Summers E, Sapru A, Hanson JH, Gildengorin G, Newman V, Flori HR. Lung aeration changes after lung recruitment in children with acute lung injury: a feasibility study. Pediatr Pulmonol. 2012;47:771–779. doi: 10.1002/ppul.22508.
    1. Kaditis AG, Motoyama EK, Zin W, Maekawa N, Nishio I, Imai T, Milic-Emili J. The effect of lung expansion and positive end-expiratory pressure on respiratory mechanics in anesthetized children. Anesth Analg. 2008;106:775–785. doi: 10.1213/ane.0b013e318162c20a.
    1. Duff JP, Rosychuk RJ, Joffe AR. The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients. Intensive Care Med. 2007;33:1778–1786. doi: 10.1007/s00134-007-0764-2.
    1. Nacoti M, Spagnolli E, Bonanomi E, Barbanti C, Cereda M, Fumagalli R. Sigh improves gas exchange and respiratory mechanics in children undergoing pressure support after major surgery. Minerva Anesthesiol. 2012;78:920–929.
    1. Morrow B, Futter M, Argent A. A recruitment manoeuvre performed after endotracheal suction does not increase dynamic compliance in ventilated paediatric patients: a randomised controlled trial. Aust J Physiother. 2007;53:163–169. doi: 10.1016/S0004-9514(07)70023-5.
    1. Gregory GA. Pediatric anesthesia. New York: Churchill Livingstone; 1994.
    1. Mau MK, Yamasato KS, Yamamoto LG. Normal oxygen saturation values in pediatric patients. Hawaii Med J. 2005;64(42):44–45.
    1. Vengsarkar AS, Swan HJ. Variations in oxygen saturation of arterial blood in infants and children with congenital heart disease. Am J Cardiol. 1964;14:622–627. doi: 10.1016/0002-9149(64)90052-9.
    1. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, Hanna BD, Rosenzweig EB, Raj JU, Cornfield D, Stenmark KR, Steinhorn R, Thebaud B, Fineman JR, Kuehne T, Feinstein JA, Friedberg MK, Earing M, Barst RJ, Keller RL, Kinsella JP, Mullen M, Deterding R, Kulik T, Mallory G, Humpl T, Wessel DL, American Heart Association Council on Cardiopulmonary CCP. Resuscitation, Council on Clinical C. Council on Cardiovascular Disease in the Y. Council on Cardiovascular R. Intervention, Council on Cardiovascular S. Anesthesia, the American Thoracic S pediatric pulmonary hypertension: guidelines From the American Heart Association and American Thoracic Society. Circulation. 2015;132:2037–2099. doi: 10.1161/CIR.0000000000000329.
    1. Jenkinson SG. Oxygen toxicity. N Horiz. 1993;1:504–511.
    1. Pannu SR. Too much oxygen: hyperoxia and oxygen management in mechanically ventilated patients. Sem Respir Crit Care Med. 2016;37:16–22. doi: 10.1055/s-0035-1570359.
    1. Abdelsalam M, Cheifetz IM. Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care. 2010;55:1483–1490.
    1. Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, Friedman G, Gajic O, Goldstein JN, Linko R, Pinheiro de Oliveira R, Sundar S, Talmor D, Wolthuis EK, Gama de Abreu M, Pelosi P, Schultz MJ, Investigators PRVN. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43:2155–2163. doi: 10.1097/CCM.0000000000001189.
    1. Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP. Permissive hypercapnia–role in protective lung ventilatory strategies. Intensive Care Med. 2004;30:347–356. doi: 10.1007/s00134-003-2051-1.
    1. Goldstein B, Shannon DC, Todres ID. Supercarbia in children: clinical course and outcome. Crit Care Med. 1990;18:166–168. doi: 10.1097/00003246-199002000-00008.
    1. Curley MA, Fackler JC. Weaning from mechanical ventilation: patterns in young children recovering from acute hypoxemic respiratory failure. Am J Crit Care. 1998;7:335–345.
    1. Newth CJ, Venkataraman S, Willson DF, Meert KL, Harrison R, Dean JM, Pollack M, Zimmerman J, Anand KJ, Carcillo JA, Nicholson CE. Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med. 2009;10:1–11. doi: 10.1097/PCC.0b013e318193724d.
    1. Foronda FK, Troster EJ, Farias JA, Barbas CS, Ferraro AA, Faria LS, Bousso A, Panico FF, Delgado AF. The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med. 2011;39:2526–2533. doi: 10.1097/CCM.0b013e3182257520.
    1. Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, Luckett PM, Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold JH, Pediatric Acute Lung I. Sepsis Investigators N Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA. 2002;288:2561–2568. doi: 10.1001/jama.288.20.2561.
    1. Schultz TR, Lin RJ, Watzman HM, Durning SM, Hales R, Woodson A, Francis B, Tyler L, Napoli L, Godinez RI. Weaning children from mechanical ventilation: a prospective randomized trial of protocol-directed versus physician-directed weaning. Respir Care. 2001;46:772–782.
    1. Blackwood B, Murray M, Chisakuta A, Cardwell CR, O’Halloran P (2013) Protocolized versus non-protocolized weaning for reducing the duration of invasive mechanical ventilation in critically ill paediatric patients. Cochrane Database Syst Rev: CD009082
    1. Jouvet P, Eddington A, Payen V, Bordessoule A, Emeriaud G, Gasco RL, Wysocki M. A pilot prospective study on closed loop controlled ventilation and oxygenation in ventilated children during the weaning phase. Crit Care. 2012;16:R85. doi: 10.1186/cc11343.
    1. Jouvet PA, Payen V, Gauvin F, Emeriaud G, Lacroix J. Weaning children from mechanical ventilation with a computer-driven protocol: a pilot trial. Intensive Care Med. 2013;39:919–925. doi: 10.1007/s00134-013-2837-8.
    1. Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a cochrane systematic review and meta- analysis. Crit Care. 2015;19:48. doi: 10.1186/s13054-015-0755-6.
    1. Jouvet P, Farges C, Hatzakis G, Monir A, Lesage F, Dupic L, Brochard L, Hubert P. Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. Pediatr Crit Care Med. 2007;8:425–432. doi: 10.1097/01.PCC.0000282157.77811.F9.
    1. Rushforth K. A randomised controlled trial of weaning from mechanical ventilation in paediatric intensive care (PIC). Methodological and practical issues. Intensive Crit Care Nurs. 2005;21:76–86. doi: 10.1016/j.iccn.2004.07.009.
    1. Suominen PK, Tuominen NA, Salminen JT, Korpela RE, Klockars JG, Taivainen TR, Meretoja OA. The air-leak test is not a good predictor of postextubation adverse events in children undergoing cardiac surgery. J Ccardiothorac Vasc Anesthesia. 2007;21:197–202. doi: 10.1053/j.jvca.2006.01.007.
    1. Takeuchi M, Imanaka H, Miyano H, Kumon K, Nishimura M. Effect of patient-triggered ventilation on respiratory workload in infants after cardiac surgery. Anesthesiology. 2000;93:1238–1244. doi: 10.1097/00000542-200011000-00017.
    1. Wolf GK, Walsh BK, Green ML, Arnold JH. Electrical activity of the diaphragm during extubation readiness testing in critically ill children. Pediatr Crit Care Med. 2011;12:e220–e224. doi: 10.1097/PCC.0b013e3181fe28fc.
    1. Withington DE, Davis GM, Vallinis P, Del Sonno P, Bevan JC. Respiratory function in children during recovery from neuromuscular blockade. Paediatr Anaesth. 1998;8:41–47. doi: 10.1046/j.1460-9592.1998.00711.x.
    1. Harikumar G, Egberongbe Y, Nadel S, Wheatley E, Moxham J, Greenough A, Rafferty GF. Tension-time index as a predictor of extubation outcome in ventilated children. Am J Respir Crit Care Med. 2009;180:982–988. doi: 10.1164/rccm.200811-1725OC.
    1. Mohr AM, Rutherford EJ, Cairns BA, Boysen PG. The role of dead space ventilation in predicting outcome of successful weaning from mechanical ventilation. J Trauma. 2001;51:843–848. doi: 10.1097/00005373-200111000-00004.
    1. Noizet O, Leclerc F, Sadik A, Grandbastien B, Riou Y, Dorkenoo A, Fourier C, Cremer R, Leteurtre S. Does taking endurance into account improve the prediction of weaning outcome in mechanically ventilated children? Crit Care. 2005;9:R798–R807. doi: 10.1186/cc3898.
    1. Farias JA, Alia I, Esteban A, Golubicki AN, Olazarri FA. Weaning from mechanical ventilation in pediatric intensive care patients. Intensive Care Med. 1998;24:1070–1075. doi: 10.1007/s001340050718.
    1. Gaies M, Tabbutt S, Schwartz SM, Bird GL, Alten JA, Shekerdemian LS, Klugman D, Thiagarajan RR, Gaynor JW, Jacobs JP, Nicolson SC, Donohue JE, Yu S, Pasquali SK, Cooper DS. Clinical epidemiology of extubation failure in the pediatric cardiac ICU: a report from the Pediatric Cardiac Critical Care Consortium. Pediatr Crit Care Med. 2015;16:837–845. doi: 10.1097/PCC.0000000000000498.
    1. Willis BC, Graham AS, Yoon E, Wetzel RC, Newth CJ. Pressure-rate products and phase angles in children on minimal support ventilation and after extubation. Intensive Care Med. 2005;31:1700–1705. doi: 10.1007/s00134-005-2821-z.
    1. Wratney AT, Benjamin DK, Jr, Slonim AD, He J, Hamel DS, Cheifetz IM. The endotracheal tube air leak test does not predict extubation outcome in critically ill pediatric patients. Pediatr Crit Care Med. 2008;9:490–496. doi: 10.1097/PCC.0b013e3181849901.
    1. Randolph AG, Forbes PW, Gedeit RG, Arnold JH, Wetzel RC, Luckett PM, O’Neil ME, Venkataraman ST, Meert KL, Cheifetz IM, Cox PN, Hanson JH, Pediatric Acute Lung I. Sepsis Investigators N Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med. 2005;6:642–647. doi: 10.1097/01.PCC.0000185484.14423.0D.
    1. Tobin MJ. Extubation and the myth of “minimal ventilator settings”. Am J Respir Crit Care Med. 2012;185:349–350. doi: 10.1164/rccm.201201-0050ED.
    1. Manczur T, Greenough A, Nicholson GP, Rafferty GF. Resistance of pediatric and neonatal endotracheal tubes: influence of flow rate, size, and shape. Crit Care Med. 2000;28:1595–1598. doi: 10.1097/00003246-200005000-00056.
    1. Khemani RG, Hotz J, Morzov R, Flink RC, Kamerkar A, LaFortune M, Rafferty GF, Ross PA, Newth CJ. Pediatric extubation readiness tests should not use pressure support. Intensive Care Med. 2016;42:1214–1222. doi: 10.1007/s00134-016-4387-3.
    1. Vianello A, Arcaro G, Braccioni F, Gallan F, Marchi MR, Chizio S, Zampieri D, Pegoraro E, Salvador V. Prevention of extubation failure in high-risk patients with neuromuscular disease. J Crit Care. 2011;26:517–524. doi: 10.1016/j.jcrc.2010.12.008.
    1. Bach JR, Goncalves MR, Hamdani I, Winck JC. Extubation of patients with neuromuscular weakness: a new management paradigm. Chest. 2010;137:1033–1039. doi: 10.1378/chest.09-2144.
    1. Hull J, Aniapravan R, Chan E, Chatwin M, Forton J, Gallagher J, Gibson N, Gordon J, Hughes I, McCulloch R, Russell RR, Simonds A. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax. 2012;67(Suppl 1):i1–i40. doi: 10.1136/thoraxjnl-2012-201964.
    1. Racca F, Mongini T, Wolfler A, Vianello A, Cutrera R, Del Sorbo L, Capello EC, Gregoretti C, Massa R, De Luca D, Conti G, Tegazzin V, Toscano A, Ranieri VM. Recommendations for anesthesia and perioperative management of patients with neuromuscular disorders. Minerva Anestesiol. 2013;79:419–433.
    1. Bissonnette B, Sessler DI, LaFlamme P. Passive and active inspired gas humidification in infants and children. Anesthesiology. 1989;71:350–354. doi: 10.1097/00000542-198909000-00006.
    1. Bissonnette B, Sessler DI. Passive or active inspired gas humidification increases thermal steady-state temperatures in anesthetized infants. Anesth Analg. 1989;69:783–787.
    1. Kelly M, Gillies D, Todd DA, Lockwood C (2010) Heated humidification versus heat and moisture exchangers for ventilated adults and children. Cochrane Database Syst Rev: CD004711
    1. Lellouche F, Taille S, Lefrancois F, Deye N, Maggiore SM, Jouvet P, Ricard JD, Fumagalli B, Brochard L, Groupe de travail sur les Respirateurs de l A-H Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data. Chest. 2009;135:276–286. doi: 10.1378/chest.08-0679.
    1. Morrow B, Futter M, Argent A. Effect of endotracheal suction on lung dynamics in mechanically-ventilated paediatric patients. Aust J Physiother. 2006;52:121–126. doi: 10.1016/S0004-9514(06)70047-2.
    1. Avena MJ, de Carvalho WB, Beppu OS. Evaluation of oxygenation, ventilation and respiratory mechanics before and after endotracheal suction in mechanically ventilated children. Rev Assoc Med Bras. 2003;49:156–161. doi: 10.1590/S0104-42302003000200033.
    1. Choong K, Chatrkaw P, Frndova H, Cox PN. Comparison of loss in lung volume with open versus in-line catheter endotracheal suctioning. Pediatr Crit Care Med. 2003;4:69–73. doi: 10.1097/00130478-200301000-00014.
    1. Copnell B, Fergusson D. Endotracheal suctioning: time-worn ritual or timely intervention? Am J Crit Care. 1995;4:100–105.
    1. Gilbert M. Assessing the need for endotracheal suction. Paediatr Nurs. 1999;11:14–17.
    1. Krause MF, Hoehn T. Chest physiotherapy in mechanically ventilated children: a review. Crit Care Med. 2000;28:1648–1651. doi: 10.1097/00003246-200005000-00067.
    1. Hawkins E, Jones A. What is the role of the physiotherapist in paediatric intensive care units? A systematic review of the evidence for respiratory and rehabilitation interventions for mechanically ventilated patients. Physiotherapy. 2015;101:303–309. doi: 10.1016/j.physio.2015.04.001.
    1. Vianello A, Corrado A, Arcaro G, Gallan F, Ori C, Minuzzo M, Bevilacqua M. Mechanical insufflation–exsufflation improves outcomes for neuromuscular disease patients with respiratory tract infections. Am J Phys Med Rehabi. 2005;84:83–88. doi: 10.1097/01.PHM.0000151941.97266.96.
    1. Miske LJ, Hickey EM, Kolb SM, Weiner DJ, Panitch HB. Use of the mechanical in-exsufflator in pediatric patients with neuromuscular disease and impaired cough. Chest. 2004;125:1406–1412. doi: 10.1378/chest.125.4.1406.
    1. Fauroux B, Guillemot N, Aubertin G, Nathan N, Labit A, Clement A, Lofaso F. Physiologic benefits of mechanical insufflation-exsufflation in children with neuromuscular diseases. Chest. 2008;133:161–168. doi: 10.1378/chest.07-1615.
    1. Chatwin M, Ross E, Hart N, Nickol AH, Polkey MI, Simonds AK. Cough augmentation with mechanical insufflation/exsufflation in patients with neuromuscular weakness. Eur Respir J. 2003;21:502–508. doi: 10.1183/09031936.03.00048102.
    1. Racca F, Del Sorbo L, Mongini T, Vianello A, Ranieri VM. Respiratory management of acute respiratory failure in neuromuscular diseases. Minerva Anestesiol. 2010;76:51–62.
    1. Newth CJ, Rachman B, Patel N, Hammer J. The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr. 2004;144:333–337. doi: 10.1016/j.jpeds.2003.12.018.
    1. Weiss M, Dullenkopf A, Fischer JE, Keller C, Gerber AC, European Paediatric Endotracheal Intubation Study G Prospective randomized controlled multi- centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth. 2009;103:867–873. doi: 10.1093/bja/aep290.
    1. Rabello L, Conceicao C, Ebecken K, Lisboa T, Bozza FA, Soares M, Povoa P, Salluh JI. Management of severe community-acquired pneumonia in Brazil: a secondary analysis of an international survey. Rev Bras Ter Intensiva. 2015;27:57–63. doi: 10.5935/0103-507X.20150010.
    1. Pearsall MF, Feldman JM. When does apparatus dead space matter for the pediatric patient? Anesth Analg. 2014;118:776–780. doi: 10.1213/ANE.0000000000000148.
    1. Lujan M, Sogo A, Grimau C, Pomares X, Blanch L, Monso E. Influence of dynamic leaks in volume-targeted pressure support noninvasive ventilation: a bench study. Respir Care. 2015;60:191–200. doi: 10.4187/respcare.03413.
    1. Fauroux B, Leroux K, Desmarais G, Isabey D, Clement A, Lofaso F, Louis B. Performance of ventilators for noninvasive positive-pressure ventilation in children. Eur Respir J. 2008;31:1300–1307. doi: 10.1183/09031936.00144807.
    1. Hussey SG, Ryan CA, Murphy BP. Comparison of three manual ventilation devices using an intubated mannequin. Arch Dis Child Fetal Neonatal Ed. 2004;89:F490–F493. doi: 10.1136/adc.2003.047712.
    1. Boussaid G, Lofaso F, Santos DB, Vaugier I, Pottier S, Prigent H, Bahrami S, Orlikowski D. Impact of invasive ventilation on survival when non-invasive ventilation is ineffective in patients with Duchenne muscular dystrophy: a prospective cohort. Respir Med. 2016;115:26–32. doi: 10.1016/j.rmed.2016.04.009.
    1. Rul B, Carnevale F, Estournet B, Rudler M, Herve C. Tracheotomy and children with spinal muscular atrophy type 1: ethical considerations in the French context. Nurs Ethics. 2012;19:408–418. doi: 10.1177/0969733011429014.
    1. Benson RC, Hardy KA, Gildengorin G, Hsia D. International survey of physician recommendation for tracheostomy for spinal muscular atrophy type I. Pediatr Pulmonol. 2012;47:606–611. doi: 10.1002/ppul.21617.
    1. Simonds AK. Respiratory support for the severely handicapped child with neuromuscular disease: ethics and practicality. Sem Respir Crit Care Med. 2007;28:342–354. doi: 10.1055/s-2007-981655.
    1. Bush A. Spinal muscular atrophy with respiratory disease (SMARD): an ethical dilemma. Intensive Care Med. 2006;32:1691–1693. doi: 10.1007/s00134-006-0347-7.
    1. Yamaguchi M, Suzuki M. Independent living with Duchenne muscular dystrophy and home mechanical ventilation in areas of Japan with insufficient national welfare services. Int J Qual Stud Health Well-being. 2013;8:20914. doi: 10.3402/qhw.v8i0.20914.
    1. Rimensberger PC, Heulitt MJ, Meliones J, Pons M, Bronicki RA. Mechanical ventilation in the pediatric cardiac intensive care unit: the essentials. World J Pediatr Congenit Heart Surg. 2011;2:609–619. doi: 10.1177/2150135111413613.
    1. Bronicki RA, Penny DJ, Anas NG, Fuhrman B. Cardiopulmonary Interactions. Pediatr Crit Care Med. 2016;17:S182–S193. doi: 10.1097/PCC.0000000000000829.
    1. Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–480. doi: 10.1136/adc.80.5.475.
    1. Bronicki RA, Herrera M, Mink RB, Domico M, Tucker D, Chang AC, Anas NG. Hemodynamics and cerebral oxygenation following repair of tetralogy of Fallot: the effects of converting from positive pressure ventilation to spontaneous breathing. Congen Heart Dis. 2010;5:416–421. doi: 10.1111/j.1747-0803.2010.00445.x.
    1. Jenkins J, Lynn A, Edmonds J, Barker G. Effects of mechanical ventilation on cardiopulmonary function in children after open-heart surgery. Crit Care Med. 1985;13:77–80. doi: 10.1097/00003246-198502000-00004.
    1. Gregory GA, Edmunds LH, Jr, Kitterman JA, Phibbs RH, Tooley WH. Continuous positive airway pressure and pulmonary and circulatory function after cardiac surgery in infants less than three months of age. Anesthesiology. 1975;43:426–431. doi: 10.1097/00000542-197510000-00008.
    1. Colgan FJ, Stewart S. PEEP and CPAP following open-heart surgery in infants and children. Anesthesiology. 1979;50:336–341. doi: 10.1097/00000542-197904000-00010.
    1. Kardos A, Vereczkey G, Szentirmai C. Haemodynamic changes during positive-pressure ventilation in children. Acta Anaesthesiol Scand. 2005;49:649–653. doi: 10.1111/j.1399-6576.2005.00670.x.
    1. Levett JM, Culpepper WS, Lin CY, Arcilla RA, Replogle RL. Cardiovascular responses to PEEP and CPAP following repair of complicated congenital heart defects. Ann Thorac Surg. 1983;36:411–416. doi: 10.1016/S0003-4975(10)60479-1.
    1. Alexi-Meskhisvili VV, Falkowski GE, Nikoljuk AP, Popov SA. Hemodynamic changes during mechanical ventilation in infants and small children after open heart surgery. Thorac Cardiovasc Surg. 1985;33:215–217. doi: 10.1055/s-2007-1014122.
    1. Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38:S534–S538. doi: 10.1097/CCM.0b013e3181f208ac.
    1. Khemani RG, Newth CJ. The design of future pediatric mechanical ventilation trials for acute lung injury. Am J Respir Crit Care Med. 2010;182:1465–1474. doi: 10.1164/rccm.201004-0606CI.
    1. Conti G, Piastra M. Mechanical ventilation for children. Curr Opin Crit Care. 2016;22:60–66. doi: 10.1097/MCC.0000000000000271.

Source: PubMed

3
S'abonner