The promise of immunotherapy in head and neck squamous cell carcinoma: combinatorial immunotherapy approaches

Panagiota Economopoulou, Ioannis Kotsantis, Amanda Psyrri, Panagiota Economopoulou, Ioannis Kotsantis, Amanda Psyrri

Abstract

The immune system plays a fundamental role in preventing cancer development by recognising and eliminating tumour cells. The recent success in the field of immunotherapy has confirmed the potential to exploit the immune response as a cancer treatment. Head and neck squamous cell carcinoma (HNSCC) is a malignancy characterized by dismal prognosis and high mortality rate; low survival outcomes in combination with significant toxicity of current treatment strategies highlight the necessity for novel therapeutic modalities. HNSCC is a favourable disease for immunotherapy, as immune escape plays a key role in tumour initiation and progression. T-cell checkpoint inhibitors targeting programmed cell death protein-1 have emerged as novel immunotherapy agents showing remarkable efficacy in HNSCC. However, only a minority of patients derive benefit for single-agent immunotherapies. In this regard, combinatorial immunotherapy approaches represent an alternative strategy that might increase the number of patients who respond to immunotherapy. Focusing on HNSCC, this review will summarise novel combinations of immune checkpoint blockade with other immunotherapy treatment modalities.

Keywords: anti-PD-1; head and cancer; immunotherapy.

References

    1. Rampias T, Sasaki C, Weinberger P, et al. . E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst 2009;101:412–23.10.1093/jnci/djp017
    1. Weinberger PM, Yu Z, Haffty BG, et al. . Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favorable prognosis. J Clin Oncol 2006;24:736–47.10.1200/JCO.2004.00.3335
    1. Baxi S, Fury M, Ganly I, et al. . Ten years of progress in head and neck cancers. J Natl Compr Canc Netw 2012;10:806–10.
    1. Hodi FS, O'Day SJ, McDermott DF, et al. . Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–23.10.1056/NEJMoa1003466
    1. Motzer RJ, Escudier B, McDermott DF, et al. . Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373:1803–13.10.1056/NEJMoa1510665
    1. Garon EB, Rizvi NA, Hui R, et al. . Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018–28.10.1056/NEJMoa1501824
    1. Ansell SM, Lesokhin AM, Borrello I, et al. . PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015;372:311–9.10.1056/NEJMoa1411087
    1. Ferris RL, Blumenschein G, Fayette J, et al. . Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856–67.10.1056/NEJMoa1602252
    1. Seiwert TY, Burtness B, Mehra R, et al. . Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17:956–65.10.1016/S1470-2045(16)30066-3
    1. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 1991:3–11.
    1. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. practical applications. Br Med J 1957;1:841–7.10.1136/bmj.1.5023.841
    1. Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J 1957;1:779–86.10.1136/bmj.1.5022.779
    1. Linsley PS, Bradshaw J, Greene J, et al. . Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 1996;4:535–43.10.1016/S1074-7613(00)80480-X
    1. Linsley PS, Brady W, Urnes M, et al. . CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991;174:561–9.10.1084/jem.174.3.561
    1. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182:459–65.10.1084/jem.182.2.459
    1. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183:2533–40.10.1084/jem.183.6.2533
    1. Walunas TL, Lenschow DJ, Bakker CY, et al. . CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–13.10.1016/1074-7613(94)90071-X
    1. Freeman GJ, Borriello F, Hodes RJ, et al. . Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993;262:907–9.10.1126/science.7694362
    1. Greene JL, Leytze GM, Emswiler J, et al. . Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem 1996;271:26762–71.10.1074/jbc.271.43.26762
    1. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996;183:2541–50.10.1084/jem.183.6.2541
    1. Linsley PS, Greene JL, Brady W, et al. . Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994;1:793–801.10.1016/S1074-7613(94)80021-9
    1. Brunner MC, Chambers CA, Chan FK, et al. . CTLA-4-mediated inhibition of early events of T cell proliferation. J Immunol 1999;162:5813–20.
    1. Carreno BM, Bennett F, Chau TA, et al. . CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol 2000;165:1352–6.10.4049/jimmunol.165.3.1352
    1. Schneider H, Downey J, Smith A, et al. . Reversal of the TCR stop signal by CTLA-4. Science 2006;313:1972–5.10.1126/science.1131078
    1. Agata Y, Kawasaki A, Nishimura H, et al. . Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996;8:765–72.10.1093/intimm/8.5.765
    1. Dong H, Zhu G, Tamada K, et al. . B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5:1365–9.10.1038/70932
    1. Freeman GJ, Long AJ, Iwai Y, et al. . Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–34.10.1084/jem.192.7.1027
    1. Latchman Y, Wood CR, Chernova T, et al. . PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261–8.10.1038/85330
    1. Parry RV, Chemnitz JM, Frauwirth KA, et al. . CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543–53.10.1128/MCB.25.21.9543-9553.2005
    1. Bennett F, Luxenberg D, Ling V, et al. . Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol 2003;170: 711–8.10.4049/jimmunol.170.2.711
    1. Saunders PA, Hendrycks VR, Lidinsky WA, et al. . PD-L2:PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion. Eur J Immunol 2005;35:3561–9.10.1002/eji.200526347
    1. Chemnitz JM, Parry RV, Nichols KE, et al. . SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004;173:945–54.10.4049/jimmunol.173.2.945
    1. Ishida Y, Agata Y, Shibahara K, et al. . Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887–95.
    1. Barber DL, Wherry EJ, Masopust D, et al. . Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006;439:682–7.10.1038/nature04444
    1. Day CL, Kaufmann DE, Kiepiela P, et al. . PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006;443:350–4.10.1038/nature05115
    1. Das R, Verma R, Sznol M, et al. . Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 2015;194:950–9.10.4049/jimmunol.1401686
    1. Somasundaram R, Herlyn M. Nivolumab in combination with ipilimumab for the treatment of melanoma. Expert Rev Anticancer Ther 2015;15:1135–41.10.1586/14737140.2015.1093418
    1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–64.10.1038/nrc3239
    1. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med 2012;366:2517–9.10.1056/NEJMe1205943
    1. Tivol EA, Borriello F, Schweitzer AN, et al. . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541–7.10.1016/1074-7613(95)90125-6
    1. Waterhouse P, Penninger JM, Timms E, et al. . Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995;270:985–8.10.1126/science.270.5238.985
    1. Nishimura H, Nose M, Hiai H, et al. . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141–51.10.1016/S1074-7613(00)80089-8
    1. Nishimura H, Okazaki T, Tanaka Y, et al. . Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319–22.10.1126/science.291.5502.319
    1. Okazaki T, Tanaka Y, Nishio R, et al. . Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 2003;9:1477–83.10.1038/nm955
    1. Curran MA, Montalvo W, Yagita H, et al. . PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 2010;107:4275–80.10.1073/pnas.0915174107
    1. Wolchok JD, Kluger H, Callahan MK, et al. . Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013;369:122–33.10.1056/NEJMoa1302369
    1. Sznol M, Kluger HM, Callahan MK, et al. . Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS- 936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL) (American Society of Clinical Oncology Meeting Abstracts). J Clin Oncol 2014;32(Suppl):Abstract LBA9003.
    1. Postow MA, Chesney J, Pavlick AC, et al. . Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015;372:2006–17.10.1056/NEJMoa1414428
    1. Herbst RS, Soria JC, Kowanetz M, et al. . Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014;515:563–7.10.1038/nature14011
    1. Taube JM, Klein A, Brahmer JR, et al. . Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014;20:5064–74.10.1158/1078-0432.CCR-13-3271
    1. Topalian SL, Hodi FS, Brahmer JR, et al. . Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443–54.10.1056/NEJMoa1200690
    1. Tumeh PC, Harview CL, Yearley JH, et al. . PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515:568–71.10.1038/nature13954
    1. Fury MBM, Sh O, Balmanoukian A, et al. . Clinical activity and safety of MEDI4736, an anti-PD-L1 antibody, in head and neck cancer. ESMO Meeting 2014, Poster No 988PD, Abstract ID 5656 Ann Oncol 2014;25:iv340–56.10.1093/annonc/mdu340
    1. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 2011;132:315–25.10.1111/j.1365-2567.2010.03398.x
    1. Monney L, Sabatos CA, Gaglia JL, et al. . Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002;415:536–41.10.1038/415536a
    1. McMahan RH, Golden-Mason L, Nishimura MI, et al. . Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 2010;120:4546–57.10.1172/JCI43127
    1. Fourcade J, Sun Z, Benallaoua M, et al. . Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010;207:2175–86.10.1084/jem.20100637
    1. Jin HT, Anderson AC, Tan WG, et al. . Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 2010;107:14733–8.10.1073/pnas.1009731107
    1. Sakuishi K, Apetoh L, Sullivan JM, et al. . Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010;207:2187–94.10.1084/jem.20100643
    1. Ngiow SF, Teng MW, Smyth MJ. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res 2011;71:6567–71.10.1158/0008-5472.CAN-11-1487
    1. Schaer DA, Cohen AD, Wolchok JD. Anti-GITR antibodies-potential clinical applications for tumor immunotherapy. Curr Opin Investig Drugs 2010;11:1378–86.
    1. Kanamaru F, Youngnak P, Hashiguchi M, et al. . Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol 2004;172:7306–14.10.4049/jimmunol.172.12.7306
    1. Ronchetti S, Nocentini G, Bianchini R, et al. . Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. J Immunol 2007;179:5916–26.10.4049/jimmunol.179.9.5916
    1. Ko K, Yamazaki S, Nakamura K, et al. . Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 2005;202:885–91.10.1084/jem.20050940
    1. Mitsui J, Nishikawa H, Muraoka D, et al. . Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin Cancer Res 2010;16:2781–91.10.1158/1078-0432.CCR-09-3243
    1. Shimizu J, Yamazaki S, Takahashi T, et al. . Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135–42.10.1038/ni759
    1. Valzasina B, Guiducci C, Dislich H, et al. . Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005;105:2845–51.10.1182/blood-2004-07-2959
    1. Cohen AD, Schaer DA, Liu C, et al. . Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 2010;5:e10436.10.1371/journal.pone.0010436
    1. Turk MJ, Guevara-Patiño JA, Rizzuto GA, et al. . Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 2004;200:771–82.10.1084/jem.20041130
    1. Lu L, Xu X, Zhang B, et al. . Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med 2014;12:36.10.1186/1479-5876-12-36
    1. Croft M, So T, Duan W, et al. . The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009;229:173–91.10.1111/j.1600-065X.2009.00766.x
    1. Baum PR, Gayle RB, Ramsdell F, et al. . Identification of OX40 ligand and preliminary characterization of its activities on OX40 receptor. Circ Shock 1994;44:30–4.
    1. Piconese S, Pittoni P, Burocchi A, et al. . A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur J Immunol 2010;40:2902–13.10.1002/eji.201040505
    1. Weinberg AD, Rivera MM, Prell R, et al. . Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 2000;164:2160–9.10.4049/jimmunol.164.4.2160
    1. Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res 2014;2:142–53.10.1158/2326-6066.CIR-13-0031-T
    1. Cuadros C, Dominguez AL, Lollini PL, et al. . Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4-1BB monoclonal antibodies induces T cell-mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer 2005;116:934–43.10.1002/ijc.21098
    1. Lee SJ, Myers L, Muralimohan G, et al. . 4-1BB and OX40 dual costimulation synergistically stimulate primary specific CD8 T cells for robust effector function. J Immunol 2004;173:3002–12.10.4049/jimmunol.173.5.3002
    1. Guo Z, Wang X, Cheng D, et al. . PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLoS One 2014;9:e89350.10.1371/journal.pone.0089350
    1. Vercellini JTC, Moran A, Polesso F, et al. . Comparison of antiOX40 to PD-1 and CTLA-4 blockade in T cell immunization/priming models. J Immunol 2015;194:70–4.
    1. Bell RB, Leidner RS, Crittenden MR, et al. . OX40 signaling in head and neck squamous cell carcinoma: Overcoming immunosuppression in the tumor microenvironment. Oral Oncol 2016;52:1–10.10.1016/j.oraloncology.2015.11.009
    1. Curti BD, Kovacsovics-Bankowski M, Morris N, et al. . OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 2013;73:7189–98.10.1158/0008-5472.CAN-12-4174
    1. Wilcox RA, Chapoval AI, Gorski KS, et al. . Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 2002;168:4262–7.10.4049/jimmunol.168.9.4262
    1. Lee HW, Nam KO, Seo SK, et al. . 4-1BB cross-linking enhances the survival and cell cycle progression of CD4 T lymphocytes. Cell Immunol 2003;223:143–50.10.1016/S0008-8749(03)00169-2
    1. Lee HW, Park SJ, Choi BK, et al. . 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 2002;169:4882–8.10.4049/jimmunol.169.9.4882
    1. Curran MA, Kim M, Montalvo W, et al. . Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS One 2011;6:e19499.10.1371/journal.pone.0019499
    1. Sznol M, Hodi FS, Margolin K, et al. . Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). American Society of Clinical Oncology Meeting Abstracts. J Clin Oncol 2008;26(Suppl):Abstract 3007.
    1. Munn DH, Shafizadeh E, Attwood JT, et al. . Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999;189:1363–72.10.1084/jem.189.9.1363
    1. Munn DH, Sharma MD, Baban B, et al. . GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005;22:633–42.10.1016/j.immuni.2005.03.013
    1. Smyth MJ, Ngiow SF, Ribas A, et al. . Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 2016;13:143–58.10.1038/nrclinonc.2015.209
    1. Holmgaard RB, Zamarin D, Munn DH, et al. . Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 2013;210:1389–402.10.1084/jem.20130066
    1. Gangadhar TC, Hamid O, Smith DC, et al. . Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer 2015;3(Suppl 2):O7.10.1186/2051-1426-3-S2-O7
    1. Gibney GT, Hamid O, Gangadhar TC, et al. . Preliminary results from a phase 1/2 study of INCB024360 combined with ipilimumab (ipi) in patients (pts) with melanoma. American Society of Clinical Oncology Meeting Abstracts J Clin Oncol 2014;32(Suppl):Abstract 3010.
    1. Bartlett DL, Liu Z, Sathaiah M, et al. . Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 2013;12:103.10.1186/1476-4598-12-103
    1. Andtbacka RH, Kaufman HL, Collichio F, et al. . Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015;33:2780–8.10.1200/JCO.2014.58.3377
    1. Harrington KJ, Hingorani M, Tanay MA, et al. . Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res 2010;16:4005–15.10.1158/1078-0432.CCR-10-0196
    1. Nemunaitis J, Ganly I, Khuri F, et al. . Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000;60:6359–66.
    1. Xu RH, Yuan ZY, Guan ZZ, et al. . [Phase II clinical study of intratumoral H101, an E1B deleted adenovirus, in combination with chemotherapy in patients with cancer]. Ai Zheng 2003;22:1307–10.
    1. Bann DV, Deschler DG, Goyal N. Novel immunotherapeutic approaches for head and neck squamous cell carcinoma. Cancers 2016;8:87.10.3390/cancers8100087
    1. Voskens CJ, Sewell D, Hertzano R, et al. . Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck 2012;34:1734–46.10.1002/hed.22004
    1. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016;14:73.10.1186/s12916-016-0623-5
    1. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011;480:480–9.10.1038/nature10673
    1. Robert C, Schachter J, Long GV, et al. . Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015;372:2521–32.10.1056/NEJMoa1503093

Source: PubMed

3
S'abonner