High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease

P J Thornalley, R Babaei-Jadidi, H Al Ali, N Rabbani, A Antonysunil, J Larkin, A Ahmed, G Rayman, C W Bodmer, P J Thornalley, R Babaei-Jadidi, H Al Ali, N Rabbani, A Antonysunil, J Larkin, A Ahmed, G Rayman, C W Bodmer

Abstract

Aims/hypothesis: To assess thiamine status by analysis of plasma, erythrocytes and urine in type 1 and type 2 diabetic patients and links to markers of vascular dysfunction.

Methods: Diabetic patients (26 type 1 and 48 type 2) with and without microalbuminuria and 20 normal healthy control volunteers were recruited. Erythrocyte activity of transketolase, the concentrations of thiamine and related phosphorylated metabolites in plasma, erythrocytes and urine, and markers of metabolic control and vascular dysfunction were determined.

Results: Plasma thiamine concentration was decreased 76% in type 1 diabetic patients and 75% in type 2 diabetic patients: normal volunteers 64.1 (95% CI 58.5-69.7) nmol/l, type 1 diabetes 15.3 (95% CI 11.5-19.1) nmol/l, p < 0.001, and type 2 diabetes 16.3 (95% CI 13.0-9.6) nmol/l, p < 0.001. Renal clearance of thiamine was increased 24-fold in type 1 diabetic patients and 16-fold in type 2 diabetic patients. Plasma thiamine concentration correlated negatively with renal clearance of thiamine (r = -0.531, p < 0.001) and fractional excretion of thiamine (r = -0.616, p < 0.001). Erythrocyte transketolase activity correlated negatively with urinary albumin excretion (r = -0.232, p < 0.05). Thiamine transporter protein contents of erythrocyte membranes of type 1 and type 2 diabetic patients were increased. Plasma thiamine concentration and urinary excretion of thiamine correlated negatively with soluble vascular adhesion molecule-1 (r = -0.246, p < 0.05, and -0.311, p < 0.01, respectively).

Conclusions/interpretation: Low plasma thiamine concentration is prevalent in patients with type 1 and type 2 diabetes, associated with increased thiamine clearance. The conventional assessment of thiamine status was masked by increased thiamine transporter content of erythrocytes.

Figures

Fig. 1
Fig. 1
Thiamine status of diabetic patients and link to sVCAM-1. a Frequency ribbon graph of plasma thiamine concentration. b Inverse relationship between plasma thiamine concentration and thiamine clearance. Nonlinear regression equation: [Thiamine]Plasma = 47.7 × ClThiamine−0.274, p<0.001. c Inverse relationship between plasma thiamine concentration and FEThiamine. Nonlinear regression equation: [Thiamine]Plasma = 74.0 × FEThiamine−0.448, p<0.001
Fig. 2
Fig. 2
a Schematic diagram of thiamine membrane transport and metabolism in erythrocytes. b Representative Western blot of THTR-1, RFC-1 and housekeeping protein β-actin of erythrocyte membranes. Lanes 1–3, normal volunteers; lanes 4–6, type 1 diabetic patients; and lanes 7–9, type 2 diabetic patients. T, Thiamine
Fig. 3
Fig. 3
Correlation of sVCAM-1 with plasma thiamine concentration (a) and urinary thiamine excretion (b). Solid horizontal line, reference mean of sVCAM-1 of normal volunteers; broken horizontal line, upper limit of sVCAM-1 of normal volunteers

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1136/bmj.320.7241.1062', 'is_inner': False, 'url': 'https://doi.org/10.1136/bmj.320.7241.1062'}, {'type': 'PMC', 'value': 'PMC1117946', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1117946/'}, {'type': 'PubMed', 'value': '10764371', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10764371/'}]}
    2. Donnelly R, Emslie-Smith AM, Gardner ID, Morris AD (2000) ABC of arterial and venous disease: vascular complications of diabetes. BMJ 320:1062–1066
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/dc07-S004', 'is_inner': False, 'url': 'https://doi.org/10.2337/dc07-s004'}, {'type': 'PubMed', 'value': '17192377', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17192377/'}]}
    2. American Diabetes Association (2007) Standards of medical care in diabetes—2007. Diabetes Care 30:S4–S41
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1001/jama.291.3.335', 'is_inner': False, 'url': 'https://doi.org/10.1001/jama.291.3.335'}, {'type': 'PubMed', 'value': '14734596', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14734596/'}]}
    2. Saydah SH, Fradkin J, Cowie CC (2004) Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 291:335–342
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/sj.ki.5000377', 'is_inner': False, 'url': 'https://doi.org/10.1038/sj.ki.5000377'}, {'type': 'PubMed', 'value': '16612330', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16612330/'}]}
    2. Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Internat 69:2057–2063
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1056/NEJM199309303291401', 'is_inner': False, 'url': 'https://doi.org/10.1056/nejm199309303291401'}, {'type': 'PubMed', 'value': '8366922', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8366922/'}]}
    2. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med 327:977–986
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1136/bmj.321.7258.405', 'is_inner': False, 'url': 'https://doi.org/10.1136/bmj.321.7258.405'}, {'type': 'PMC', 'value': 'PMC27454', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc27454/'}, {'type': 'PubMed', 'value': '10938048', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10938048/'}]}
    2. Stratton IM, Adler AI, Neil HAW et al (2002) Association of glycaemic with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.51.6.1655', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.51.6.1655'}, {'type': 'PubMed', 'value': '12031950', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12031950/'}]}
    2. Rogus JJ, Warram JH, Krolewski AS (2002) Genetic studies of late diabetic complications: the overlooked importance of diabetes duration before complication onset. Diabetes 51:1655–1662
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/db06-0781', 'is_inner': False, 'url': 'https://doi.org/10.2337/db06-0781'}, {'type': 'PubMed', 'value': '17130480', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17130480/'}]}
    2. Placha G, Poznik GD, Dunn J et al (2006) A genome-wide linkage scan for genes controlling variation in renal function estimated by serum cystatin C levels in extended families with type 2 diabetes. Diabetes 55:3358–3365
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1093/aje/kwj287', 'is_inner': False, 'url': 'https://doi.org/10.1093/aje/kwj287'}, {'type': 'PubMed', 'value': '16928730', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16928730/'}]}
    2. Costacou T, Chang Y, Ferrell RE, Orchard TJ (2006) Identifying genetic susceptibilities to diabetes-related complications among individuals at low risk of complications: an application of tree-structured survival analysis. Am J Epidemiol 164:862–872
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2174/157339905774574383', 'is_inner': False, 'url': 'https://doi.org/10.2174/157339905774574383'}, {'type': 'PubMed', 'value': '18220605', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18220605/'}]}
    2. Thornalley PJ (2005) The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Res 1:287–298
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s00125-004-1582-5', 'is_inner': False, 'url': 'https://doi.org/10.1007/s00125-004-1582-5'}, {'type': 'PubMed', 'value': '15662560', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15662560/'}]}
    2. Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ (2004) High dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 47:2235–2246
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0002-8223(95)00148-4', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0002-8223(95)00148-4'}, {'type': 'PubMed', 'value': '7722187', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7722187/'}]}
    2. Brady JA, Rock CL, Horneffer MR (1995) Thiamin status, diuretic medications, and the management of congestive heart failure. J Am Diet Assoc 95:541–544
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0021-9673(91)80116-X', 'is_inner': False, 'url': 'https://doi.org/10.1016/0021-9673(91)80116-x'}]}
    2. Sander S, Hahn A, Stein J, Rehner G (1991) Comparative studies on the high performance liquid chromatographic determination of thiamine and its phosphate esters with chloroethylamine as an internal standard using precolumn and postcolumn derivatization procedures. J Chromatogr 558:115–124
    1. None
    2. Dawson RMC, Elliott DC, Elliott WH, Jones KM (1989) Data for biochemical research, 3rd edn. Oxford University Press, Oxford
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9342012', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9342012/'}]}
    2. Cull CA, Manley SE, Stratton IM et al (1997) Approach to maintaining comparability of biochemical data during long-term clinical trials. Clin Chem 43:1913–1918
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.274.45.31925', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.274.45.31925'}, {'type': 'PubMed', 'value': '10542220', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10542220/'}]}
    2. Dutta B, Huang W, Molero M et al (1999) Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 274:31925–31929
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11997266', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11997266/'}]}
    2. Zhao R, Gao F, Goldman ID (2002) Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol 282:C1512–C1517
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1186/1477-5956-3-5', 'is_inner': False, 'url': 'https://doi.org/10.1186/1477-5956-3-5'}, {'type': 'PMC', 'value': 'PMC1184097', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1184097/'}, {'type': 'PubMed', 'value': '15941475', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15941475/'}]}
    2. Churchward M, Butt RH, Lang J, Hsu K, Coorssen J (2005) Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci 3:5
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8157433', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8157433/'}]}
    2. Finglas PM (1993) Thiamin. Internat J Vitam Nutr Res 63:270–274
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14261841', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14261841/'}]}
    2. Ziporin ZZ, Nunes WT, Powell RC, Waring PP, Sauberlich HE (1965) Thiamine requirement in the adult human as measured by urinary excretion of thiamine metabolites. J Nutr 85:297–304
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1152/ajprenal.00078.2006', 'is_inner': False, 'url': 'https://doi.org/10.1152/ajprenal.00078.2006'}, {'type': 'PubMed', 'value': '16705148', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16705148/'}]}
    2. Ashokkumar B, Vaziri ND, Said HM (2006) Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. Am J Physiol Renal Physiol 291:F796–F805
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12900388', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12900388/'}]}
    2. Reidling JC, Said HM (2003) In vitro and in vivo characterization of the minimal promoter region of the human thiamin transporter SLC19A2. Am J Physiol Cell Physiol 285:C633–C641
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1152/ajpgi.00234.2004', 'is_inner': False, 'url': 'https://doi.org/10.1152/ajpgi.00234.2004'}, {'type': 'PubMed', 'value': '15217784', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15217784/'}]}
    2. Nabokina SM, Said HM (2004) Characterization of the 5′-regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies. Am J Physiol Gastrointest Liver Physiol 287:G822–G829
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0378-1119(99)00078-5', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0378-1119(99)00078-5'}, {'type': 'PubMed', 'value': '10231581', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10231581/'}]}
    2. Tolner B, Singh A, Esaki T, Roy K, Sirotnak FM (1999) Transcription of the mouse RFC-1 gene encoding a folate transporter. Multiplicity and properties of promoters with minimum requirements for their basal activity. Gene 231:163–172
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1046/j.1523-1755.2000.07703.x', 'is_inner': False, 'url': 'https://doi.org/10.1046/j.1523-1755.2000.07703.x'}, {'type': 'PubMed', 'value': '10997685', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10997685/'}]}
    2. Schleicher ED, Weigert C (2000) Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int 58:S13–S18
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.52.8.2110', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.52.8.2110'}, {'type': 'PubMed', 'value': '12882930', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12882930/'}]}
    2. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high dose thiamine and Benfotiamine. Diabetes 52:2110–2120
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0005-2736(01)00430-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0005-2736(01)00430-8'}, {'type': 'PubMed', 'value': '11779568', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11779568/'}]}
    2. Verri A, Laforenza U, Gastaldi G, Tosco M, Rindi G (2002) Molecular characteristics of small intestinal and renal brush border thiamin transporters in rats. Biochim Biophys Acta 1558:187–197
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9398031', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9398031/'}]}
    2. Nascimento-Gomes G, Zaladek Gil F, Mello-Aires M (1997) Alterations of the renal handling of H+ in diabetic rats. Kidney Blood Press Res 20:251–257
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1681/ASN.2006080872', 'is_inner': False, 'url': 'https://doi.org/10.1681/asn.2006080872'}, {'type': 'PubMed', 'value': '17329575', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17329575/'}]}
    2. Perkins BA, Ficociello LH, Ostrander BE et al (2007) Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol 18:1353–1361
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1111/j.1464-5491.2007.02112.x', 'is_inner': False, 'url': 'https://doi.org/10.1111/j.1464-5491.2007.02112.x'}, {'type': 'PubMed', 'value': '17388960', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17388960/'}]}
    2. MacIsaac RJ, Tsalamandris C, Thomas MC et al (2007) The accuracy of cystatin C and commonly used creatinine-based methods for detecting moderate and mild chronic kidney disease in diabetes. Diabetic Med 24:443–448
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '3451944', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/3451944/'}]}
    2. Saito N, Kimura M, Kuchiba A, Itokawa Y (1987) Blood thiamine levels in outpatients with diabetes mellitus. J Nutr Sci Vitaminol 33:421–430
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s005920050148', 'is_inner': False, 'url': 'https://doi.org/10.1007/s005920050148'}, {'type': 'PubMed', 'value': '10436256', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10436256/'}]}
    2. Valerio G, Franzese A, Poggi V, Patrini C, Laforenza U, Tenore A (1999) Lipophilic thiamine treatment in longstanding insulin-dependent diabetes mellitus. Acta Diabetol 36:73–76
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9250110', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9250110/'}]}
    2. Laforenza U, Patrini C, Alvisi C, Faelli A, Licandro A, Rindi G (1997) Thiamine uptake in human intestinal biopsy specimens, including observations from a patient with acute thiamine deficiency. Am J Clin Nutr 66:320–326
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1136/jnnp.2005.075119', 'is_inner': False, 'url': 'https://doi.org/10.1136/jnnp.2005.075119'}, {'type': 'PMC', 'value': 'PMC2077706', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2077706/'}, {'type': 'PubMed', 'value': '16484643', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16484643/'}]}
    2. Gorson KC, Ropper AH (2006) Additional causes for distal sensory polyneuropathy in diabetic patients. J Neurol Neurosurg Psychiatry 77:354–358
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC4639924', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4639924/'}, {'type': 'PubMed', 'value': '11818404', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11818404/'}]}
    2. Naggar H, Ola MS, Moore P et al (2002) Downregulation of reduced-folate transporter by glucose in cultured RPE cells and in RPE of diabetic mice. Invest Ophthalmol Vis Sci 43:556–563
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.51.4.1157', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.51.4.1157'}, {'type': 'PubMed', 'value': '11916939', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11916939/'}]}
    2. Stehouwer CDA, Gall MA, Twisk JWR, Knudsen E, Emeis JJ, Parving H-H (2002) Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes. Diabetes 51:1157–1165
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.49.3.485', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.49.3.485'}, {'type': 'PubMed', 'value': '10868972', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10868972/'}]}
    2. Jager A, van Hinsbergh VW, Kostense PJ et al (2000) Increased levels of soluble vascular cell adhesion molecule 1 are associated with risk of cardiovascular mortality in type 2 diabetes: the Hoorn study. Diabetes 49:485–491
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diacare.22.11.1865', 'is_inner': False, 'url': 'https://doi.org/10.2337/diacare.22.11.1865'}, {'type': 'PubMed', 'value': '10546021', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10546021/'}]}
    2. Lim SC, Caballero AE, Smakowski P, LoGerfo FW, Horton ES, Veves A (1999) Soluble intercellular adhesion molecule, vascular cell adhesion molecule, and impaired microvascular reactivity are early markers of vasculopathy in type 2 diabetic individuals without microalbuminuria. Diabetes Care 22:1865–1870
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/jc.81.12.4313', 'is_inner': False, 'url': 'https://doi.org/10.1210/jc.81.12.4313'}, {'type': 'PubMed', 'value': '8954033', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8954033/'}]}
    2. Fasching P, Veitl M, Rohac M et al (1996) Elevated concentrations of circulating adhesion molecules and their association with microvascular complications in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81:4313–4317
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1096-9136(199808)15:8<661::AID-DIA645>3.0.CO;2-G', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1096-9136(199808)15:8<661::aid-dia645>3.0.co;2-g'}, {'type': 'PubMed', 'value': '9702469', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9702469/'}]}
    2. Koga M, Otsuki M, Kubo M, Hashimoto J, Kasayama S (1998) Relationship between circulating vascular cell adhesion molecule-1 and microvascular complications in type 2 diabetes mellitus. Diabet Med 15:661–667
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.jdiacomp.2005.06.005', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.jdiacomp.2005.06.005'}, {'type': 'PubMed', 'value': '16632240', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16632240/'}]}
    2. Soedamah-Muthu SS, Chaturvedi N, Schalkwijk CG, Stehouwer CDA, Ebeling P, Fuller JH (2006) Soluble vascular cell adhesion molecule-1 and soluble E-selectin are associated with micro- and macrovascular complications in type 1 diabetic patients. J Diabetes Complications 20:188–195
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1161/01.CIR.0000165064.31505.3B', 'is_inner': False, 'url': 'https://doi.org/10.1161/01.cir.0000165064.31505.3b'}, {'type': 'PubMed', 'value': '15867184', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15867184/'}]}
    2. Schaumberg DA, Glynn RJ, Jenkins AJ et al (2005) Effect of intensive glycemic control on levels of markers of inflammation in type 1 diabetes mellitus in the diabetes control and complications trial. Circulation 111:2446–2453
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1046/j.1464-5491.2001.00457.x', 'is_inner': False, 'url': 'https://doi.org/10.1046/j.1464-5491.2001.00457.x'}, {'type': 'PubMed', 'value': '11318844', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11318844/'}]}
    2. Matsumoto K, Nakamura H, Ueki Y, Tominga T, Miyake S (2001) Correction of hyperglycaemia reduces insulin resistance and serum soluble E-selectin levels in patients with type 2 diabetes mellitus. Diabet Med 18:224–228

Source: PubMed

3
S'abonner