A novel bedtime pulsatile-release caffeine formula ameliorates sleep inertia symptoms immediately upon awakening

Dario A Dornbierer, Firat Yerlikaya, Rafael Wespi, Martina I Boxler, Clarissa D Voegel, Laura Schnider, Aslihan Arslan, Diego M Baur, Markus R Baumgartner, Tina Maria Binz, Thomas Kraemer, Hans-Peter Landolt, Dario A Dornbierer, Firat Yerlikaya, Rafael Wespi, Martina I Boxler, Clarissa D Voegel, Laura Schnider, Aslihan Arslan, Diego M Baur, Markus R Baumgartner, Tina Maria Binz, Thomas Kraemer, Hans-Peter Landolt

Abstract

Sleep inertia is a disabling state of grogginess and impaired vigilance immediately upon awakening. The adenosine receptor antagonist, caffeine, is widely used to reduce sleep inertia symptoms, yet the initial, most severe impairments are hardly alleviated by post-awakening caffeine intake. To ameliorate this disabling state more potently, we developed an innovative, delayed, pulsatile-release caffeine formulation targeting an efficacious dose briefly before planned awakening. We comprehensively tested this formulation in two separate studies. First, we established the in vivo caffeine release profile in 10 young men. Subsequently, we investigated in placebo-controlled, double-blind, cross-over fashion the formulation's ability to improve sleep inertia in 22 sleep-restricted volunteers. Following oral administration of 160 mg caffeine at 22:30, we kept volunteers awake until 03:00, to increase sleep inertia symptoms upon scheduled awakening at 07:00. Immediately upon awakening, we quantified subjective state, psychomotor vigilance, cognitive performance, and followed the evolution of the cortisol awakening response. We also recorded standard polysomnography during nocturnal sleep and a 1-h nap opportunity at 08:00. Compared to placebo, the engineered caffeine formula accelerated the reaction time on the psychomotor vigilance task, increased positive and reduced negative affect scores, improved sleep inertia ratings, prolonged the cortisol awakening response, and delayed nap sleep latency one hour after scheduled awakening. Based on these findings, we conclude that this novel, pulsatile-release caffeine formulation facilitates the sleep-to-wake transition in sleep-restricted healthy adults. We propose that individuals suffering from disabling sleep inertia may benefit from this innovative approach.Trials registration: NCT04975360.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
Illustration of the study procedures of the in vivo validation study (A) and the pharmacodynamic study (B). Timepoints of blood withdrawal are indicated as grey drops (drop symbols). Sleep episodes are highlighted as hatched areas. In both studies, sleep was continuously recorded by polysomnography. In the pharmacodynamic study, participants were kept awake until 3:00. Immediately after awakening from a restricted 4-h nocturnal sleep episode (at 07:00), volunteers performed a 1-h testing battery (referred to as “Testing”) to quantify behavioral, cognitive, emotional and physiological markers of sleep inertia. At 8:00, the participants were given a 1-h nap opportunity, while the latency to fall asleep and the sleep profile were recorded with polysomnography. Sleep inertia assessment, CAR measurements and physiological sleepiness testing were only performed in the pharmacodynamic study.
Figure 2
Figure 2
Evolution of the caffeine plasma concentration over time for the in vivo validation study (A) and the pharmacodynamic study (B). Black dots indicate mean caffeine plasma concentrations, error bars indicate standard errors (SEM). The horizontal dashed line at 5 μM indicates the threshold concentration of caffeine efficacy. Time point ‘0’ on the x-axis refers to 22:30 when the caffeine was administered. Sleep periods are indicated as hatched areas.
Figure 3
Figure 3
Median PVT reaction time (left) and number of lapses (right) at 2:30 and 7:05. Mean values (dots) and standard error of the mean (vertical lines) are shown. Grey lines indicate the placebo condition; black lines indicate the caffeine condition. ***p < 0.001 (Benjamini–Hochberg corrected).
Figure 4
Figure 4
Post-awakening (7:15–8:00) assessments of subjective state. ASIQ = Acute Sleep Inertia Questionnaire (administered at 07:45). CAQ = Caffeine Acute Questionnaire. PANAS-positive = positive affective scale (administered at 07:15). PANAS-negative = negative affective scale (administered at 07:30). *p < 0.05; **p < 0.01 (Benjamini–Hochberg corrected).
Figure 5
Figure 5
Salivary cortisol awakening response (CAR). Mean salivary cortisol concentration (dots) and standard error of the mean (vertical lines) are shown. Grey lines indicate the placebo condition; black lines indicate the caffeine condition. *p < 0.05 (Benjamini–Hochberg corrected).
Figure 6
Figure 6
Visually-sored sleep variables in (A) the 4-h nighttime sleep episode (03:00–07:00); (B) the final 10 min before scheduled awakening (06:50–07:00); and (C) the 1-h nap sleep opportunity (08:00–09:00) are shown. SOL, sleep onset latency; N1-3, non-rapid-eye-movement sleep stages N1-3; REM, rapid-eye movement sleep; *p < 0.05; **p < 0.01 (Benjamini–Hochberg corrected).

References

    1. Hilditch CJ, McHill AW. Sleep inertia: Current insights. Nat. Sci. Sleep. 2019;11:155–165. doi: 10.2147/NSS.S188911.
    1. Hofer-Tinguely G, Achermann P, Landolt HP, Regel S, Rétey JV, Dürr R, et al. Sleep intertia: Performance changes after sleep, rest and active waking. Cogn. Brain Res. 2005;22:323–331. doi: 10.1016/j.cogbrainres.2004.09.013.
    1. Jewett ME, Wyatt JK, Ritz-De Cecco A, Khalsa SB, Dijk DJ, Czeisler CA. Time course of sleep inertia dissipation in human performance and alertness. J. Sleep Res. 1999;8:1–8. doi: 10.1111/j.1365-2869.1999.00128.x.
    1. Tassi P, Muzet A. Sleep inertia. Sleep Med. Rev. 2000;4:341–353. doi: 10.1053/smrv.2000.0098.
    1. Amaral O, Garrido A, Pereira C, Veiga N, Serpa C, Sakellarides C. Sleep patterns and insomnia among portuguese adolescents: A cross-sectional study. Aten Primaria. 2014;46(Suppl 5):191–194. doi: 10.1016/S0212-6567(14)70090-3.
    1. Hilditch CJ, Dorrian J, Banks S. Time to wake up: Reactive countermeasures to sleep inertia. Ind. Health. 2016;54:528–541. doi: 10.2486/indhealth.2015-0236.
    1. Ohayon MM, Priest RG, Zulley J, Smirne S. The place of confusional arousals in sleep and mental disorders—Findings in a general population sample of 13,057 subjects. J. Nerv. Ment. Dis. 2000;188:340–348. doi: 10.1097/00005053-200006000-00004.
    1. Borisenkov MF, Petrova NB, Timonin VD, Fradkova LI, Kolomeichuk SN, Kosova AL, et al. Sleep characteristics, chronotype and winter depression in 10–20-year-olds in northern European Russia. J. Sleep Res. 2015;24:288–295. doi: 10.1111/jsr.12266.
    1. Trenkwalder C, Kies B, Rudzinska M, Fine J, Nikl J, Honczarenko K, et al. Rotigotine effects on early morning motor function and sleep in Parkinson's disease: A double-blind, randomized, placebo-controlled study (RECOVER) Movement Disord. 2011;26:90–99. doi: 10.1002/mds.23441.
    1. Trotti LM, Bliwise DL. Treatment of the sleep disorders associated with Parkinson's disease. Neurotherapeutics. 2014;11:68–77. doi: 10.1007/s13311-013-0236-z.
    1. Broughton RJ. Sleep disorders—disorders of arousal. Science. 1968;159:1070–1078. doi: 10.1126/science.159.3819.1070.
    1. Bruck D, Pisani DL. The effects of sleep inertia on decision-making performance. J. Sleep Res. 1999;8:95–103. doi: 10.1046/j.1365-2869.1999.00150.x.
    1. Vyazovskiy VV, Cui NY, Rodriguez AV, Funk C, Cirelli C, Tononi G. The Dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep. 2014;37:1337–1347. doi: 10.5665/sleep.3926.
    1. Landolt HP. Sleep homeostasis: A role for adenosine in humans? Biochem. Pharmacol. 2008;75:2070–2079. doi: 10.1016/j.bcp.2008.02.024.
    1. Nehlig A. Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci. Biobehav .Rev. 1999;23:563–576. doi: 10.1016/S0149-7634(98)00050-5.
    1. Van Dongen HP, Price NJ, Mullington JM, Szuba MP, Kapoor SC, Dinges DF. Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep. 2001;24:813–819. doi: 10.1093/sleep/24.7.813.
    1. Newman RA, Kamimori GH, Wesensten NJ, Picchioni D, Balkin TJ. Caffeine gum minimizes sleep inertia. Percept. Motor Skill. 2013;116:280–293. doi: 10.2466/29.22.25.PMS.116.1.280-293.
    1. Gonzaga LA, Vanderlei LCM, Gomes RL, Valenti VE. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: A crossover study. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-14540-4.
    1. Lin AS, Uhde TW, Slate SO, McCann UD. Effects of intravenous caffeine administered to healthy males during sleep. Depress Anxiety. 1997;5:21–28. doi: 10.1002/(SICI)1520-6394(1997)5:1<21::AID-DA4>;2-8.
    1. Boehringer A, Tost H, Haddad L, Lederbogen F, Wust S, Schwarz E, et al. Neural correlates of the cortisol awakening response in humans. Neuropsychopharmacol. 2015;40:2278–2285. doi: 10.1038/npp.2015.77.
    1. Clow A, Hucklebridge F, Stalder T, Evans P, Thorn L. The cortisol awakening response: More than a measure of HPA axis function. Neurosci. Biobehav. Rev. 2010;35:97–103. doi: 10.1016/j.neubiorev.2009.12.011.
    1. Kudielka BM, Federenko IS, Hellhammer DH, Wust S. Morningness and eveningness: The free cortisol rise after awakening in “early birds” and “night owls”. Biol. Psychol. 2006;72:141–146. doi: 10.1016/j.biopsycho.2005.08.003.
    1. Bonati M, Latini R, Galletti F, Young JF, Tognoni G, Garattini S. Caffeine disposition after oral doses. Clin. Pharmacol. Ther. 1982;32:98–106. doi: 10.1038/clpt.1982.132.
    1. Centofanti S, Banks S, Coussens S, Gray D, Munro E, Nielsen J, et al. A pilot study investigating the impact of a caffeine-nap on alertness during a simulated night shift. Chronobiol. Int. 2020;37:1469–1473. doi: 10.1080/07420528.2020.1804922.
    1. Landolt HP, Dijk DJ, Gaus SE, Borbély AA. Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacol. 1995;12:229–238. doi: 10.1016/0893-133X(94)00079-F.
    1. Ballesta A, Innominato PF, Dallmann R, Rand DA, Levi FA. Systems chronotherapeutics. Pharmacol. Rev. 2017;69:161–199. doi: 10.1124/pr.116.013441.
    1. Mandal AS, Biswas N, Karim KM, Guha A, Chatterjee S, Behera M, et al. Drug delivery system based on chronobiology—A review. J. Control Release. 2010;147:314–325. doi: 10.1016/j.jconrel.2010.07.122.
    1. Naeem M, Choi M, Cao J, Lee Y, Ikram M, Yoon S, et al. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des. Dev. Ther. 2015;9:3789–3799.
    1. Akhgari A, Sadeghi F, Garekani HA. Combination of time-dependent and pH-dependent polymethacrylates as a single coating formulation for colonic delivery of indomethacin pellets. Int. J. Pharm. 2006;320:137–142. doi: 10.1016/j.ijpharm.2006.05.011.
    1. Song LJ, Liang LP, Shi XY, Chen HL, Zhao SM, Chen WF, et al. Optimizing pH-sensitive and time-dependent polymer formula of colonic pH-responsive pellets to achieve precise drug release. Asian J. Pharm. Sci. 2019;14:413–422. doi: 10.1016/j.ajps.2018.05.012.
    1. Yadav D, Survase S, Kumar N. Dual coating of swellable and rupturable polymers on Glipizide loaded MCC pellets for pulsatile delivery: Formulation design and in vitro evaluation. Int. J. Pharm. 2011;419:121–130. doi: 10.1016/j.ijpharm.2011.07.026.
    1. Broesder A, Woerdenbag HJ, Prins GH, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part I: In vitro and clinical evaluation of novel systems. Drug Discov. Today. 2020;25:1362–1373. doi: 10.1016/j.drudis.2020.06.011.
    1. Wahlgren M, Axenstrand M, Hakansson A, Marefati A, Pedersen BL. In vitro methods to study colon release: State of the art and an outlook on new strategies for better in-vitro biorelevant release media. Pharmaceutics. 2019;11:95. doi: 10.3390/pharmaceutics11020095.
    1. Dorrian J, Rogers NL, Dinges DF. Psychomotor vigilance performance: a neurocognitive assay sensitive to sleep loss. In: Kushida C, editor. Sleep deprivation: Clinical issues, pharmacology and sleep loss effects. Marcel Dekker, Inc.; 2005. pp. 39–70.
    1. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect—The Panas scales. J. Pers. Soc. Psychol. 1988;54:1063–1070. doi: 10.1037/0022-3514.54.6.1063.
    1. Rétey JV, Adam M, Khatami R, Luhmann UFO, Jung HH, Berger W, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin. Pharmacol. Ther. 2007;81:692–698. doi: 10.1038/sj.clpt.6100102.
    1. Kanady JC, Harvey AG. Development and validation of the sleep inertia questionnaire (SIQ) and assessment of sleep inertia in analogue and clinical depression. Cogn. Ther. Res. 2015;39:601–612. doi: 10.1007/s10608-015-9686-4.
    1. Kirchner WK. Age-differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958;55:352–358. doi: 10.1037/h0043688.
    1. Brickenkamp R. Test d2 Aufmerksamkeits-Belastungs-Test. 9. Hogrefe; 2002.
    1. Binz TM, Braun U, Baumgartner MR, Kraemer T. Development of an LC-MS/MS method for the determination of endogenous cortisol in hair using C-13(3)-labeled cortisol as surrogate analyte. J. Chromatogr. B. 2016;1033:65–72. doi: 10.1016/j.jchromb.2016.07.041.
    1. Holst SC, Sousek A, Hefti K, Saberi-Moghadam S, Buck A, Ametamey SM, et al. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation. Elife. 2017;6:e28751. doi: 10.7554/eLife.28751.
    1. Weigend S, Holst SC, Treyer V, O'Gorman Tuura RL, Meier J, Ametamey SM, et al. Dynamic changes in cerebral and peripheral markers of glutamatergic signaling across the human sleep-wake cycle. Sleep. 2019;42:161. doi: 10.1093/sleep/zsz161.
    1. Hubbard J, Gent TC, Hoekstra MMB, Emmenegger Y, Mongrain V, Landolt HP, et al. Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat. Commun. 2020;11:1–6.
    1. Dornbierer DA, Baur DM, Stucky B, Quednow BB, Kraemer T, Seifritz E, et al. Neurophysiological signature of gamma-hydroxybutyrate augmented sleep in male healthy volunteers may reflect biomimetic sleep enhancement: a randomized controlled trial. Neuropsychopharmacol. 2019;44:1985–1993. doi: 10.1038/s41386-019-0382-z.
    1. Jasper HH. Report on the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1958;10:370–375. doi: 10.1016/0013-4694(58)90053-1.
    1. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, et al. AASM Scoring Manual Updates for 2017 (Version 2.4) J. Clin. Sleep Med. 2017;13:665–6. doi: 10.5664/jcsm.6576.
    1. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat. Med. 1990;9:811–818. doi: 10.1002/sim.4780090710.
    1. Beaumont M, Batejat D, Pierard C, Coste O, Doireau P, Van Beers P, et al. Slow release caffeine and prolonged (64-h) continuous wakefulness: Effects on vigilance and cognitive performance. J Sleep Res. 2001;10:265–276. doi: 10.1046/j.1365-2869.2001.00266.x.
    1. Lagarde D, Batejat D, Sicard B, Trocherie S, Chassard D, Enslen M, et al. Slow-release caffeine: A new response to the effects of a limited sleep deprivation. Sleep. 2000;23:651–661. doi: 10.1093/sleep/23.5.1h.
    1. Lazarus M, Yoo O, Landolt H-P. Adenosinergic control of sleep. In: Kryger MH, Roth T, Dement WC, editors. Principles and Practice of Sleep Medicine. 7. Amsterdam: Elsevier; 2021.
    1. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, et al. Arousal effect of caffeine depends on adenosine A(2A) receptors in the shell of the nucleus accumbens. J. Neurosci. 2011;31:10067–10075. doi: 10.1523/JNEUROSCI.6730-10.2011.
    1. Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol. Psychiat. 2006;59:1151–1159. doi: 10.1016/j.biopsych.2005.09.018.
    1. Solinas M, Ferre S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci. 2002;22:6321–6324. doi: 10.1523/JNEUROSCI.22-15-06321.2002.
    1. van den Berg B, de Jong M, Woldorff MG, Lorist MM. Caffeine boosts preparatory attention for reward-related stimulus information. J. Cogn. Neurosci. 2021;33:104–118. doi: 10.1162/jocn_a_01630.
    1. Trautmann C, Burek D, Hubner CA, Girault JA, Engmann O. A regulatory pathway linking caffeine action, mood and the diurnal clock. Neuropharmacol. 2020;172:108133. doi: 10.1016/j.neuropharm.2020.108133.
    1. Radulovacki M, Miletich RS, Green RD. N6 (L-Phenylisopropyl)adenosine (L-PIA) increases slow-wave sleep (S2) and decreases wakefulness in rats. Brain Res. 1982;246:178–180. doi: 10.1016/0006-8993(82)90161-5.
    1. Batalha VL, Ferreira DG, Coelho JE, Valadas JS, Gomes R, Temido-Ferreira M, et al. The caffeine-binding adenosine A(2A) receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep. 2016;6:1–5. doi: 10.1038/srep31493.
    1. Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. Faseb. J. 2009;23:1572–1583. doi: 10.1096/fj.08-117697.

Source: PubMed

3
S'abonner