Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin

J H Doroshow, G Y Locker, C E Myers, J H Doroshow, G Y Locker, C E Myers

Abstract

The endogenous defenses of the mouse heart against reactive oxygen metabolites were investigated. The activities of three enzymes capable of detoxifying activated oxygen were determined in both the heart and liver; cardiac muscle contains 150 times less catalase and nearly four times less superoxide dismutase than liver. Glutathione peroxidase activities were, however, similar to the two tissues. Assay of glutathione peroxidase in the heart after 6 wk of selenium depletion with both hydrogen peroxide and cumene hydroperoxide as substrates revealed a >80% drop in enzyme activity and gave no indication that murine cardiac tissue contains nonselenium-dependent glutathione peroxidase. The selenium-deficient state, which was characterized by markedly decreased cardiac glutathione peroxidase levels, led to significantly enhanced doxorubicin toxicity at a dose of 15 mg/kg i.p. Doxorubicin administration in selenium-sufficient animals resulted in a dose-dependent decrease in cardiac glutathione peroxidase activity; the decrease in enzyme activity lasted 72 h after 15 mg/kg i.p. In contrast, cardiac superoxide dismutase and hepatic superoxide dismutase and glutathione peroxidase were unaffected by this dose of doxorubicin. These results suggest that the major pathway in cardiac tissue for detoxification of reactive oxygen metabolites is via the concerted action of superoxide dismutase and selenium-dependent glutathione peroxidase. The latter enzyme may be depleted by a selenium-deficient diet or doxorubicin treatment, leaving the heart with limited mechanisms for disposing of hydrogen peroxide or lipid peroxides.

References

    1. Cancer Chemother Rep. 1966 Mar;50(3):163-70
    1. J Lab Clin Med. 1967 Jul;70(1):158-69
    1. Biochemistry. 1969 Jul;8(7):2827-32
    1. J Biol Chem. 1969 Nov 25;244(22):6049-55
    1. Anal Biochem. 1970 Mar;34:30-8
    1. J Biol Chem. 1971 May 10;246(9):2875-80
    1. Biochem J. 1971 Aug;123(5):721-9
    1. Cancer Res. 1972 Mar;32(3):511-5
    1. J Nutr. 1972 May;102(5):689-96
    1. J Biol Chem. 1972 May 25;247(10):3170-5
    1. Biochem Med. 1973 Jun;7(3):396-404
    1. Hum Hered. 1973 Apr;23(4):338-45
    1. J Pharmacol Exp Ther. 1974 Nov;191(2):331-40
    1. J Biol Chem. 1975 Jul 10;250(13):5144-9
    1. J Natl Cancer Inst. 1975 Dec;55(6):1265-74
    1. Biochim Biophys Acta. 1976 Jun 22;431(3):459-68
    1. Cancer Treat Rev. 1976 Sep;3(3):111-20
    1. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952-8
    1. Eur J Cancer. 1976 Nov;12(11):913-23
    1. J Clin Invest. 1976 Nov;58(5):1174-84
    1. J Clin Invest. 1977 Jan;59(1):149-58
    1. Cancer Res. 1977 May;37(5):1416-20
    1. J Biol Chem. 1977 May 25;252(10):3509-14
    1. Biochem J. 1977 Mar 15;162(3):509-25
    1. Science. 1977 Jul 8;197(4299):165-7
    1. Anal Biochem. 1977 Jun;80(2):409-15
    1. Mol Pharmacol. 1977 Sep;13(5):901-10
    1. Biochem Biophys Res Commun. 1977 Jul 25;77(2):797-803
    1. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1525-35
    1. J Biol Chem. 1978 Jan 10;253(1):43-6
    1. Chem Biol Interact. 1977 Dec;19(3):265-78
    1. Toxicol Appl Pharmacol. 1978 Feb;43(2):237-47
    1. Cancer Res. 1978 Jun;38(6):1745-50
    1. Am J Vet Res. 1978 Jun;39(6):997-1010
    1. Science. 1978 Sep 8;201(4359):875-80
    1. Cancer Treat Rep. 1978 Jul;62(7):1033-6
    1. J Biol Chem. 1951 Nov;193(1):265-75
    1. Biochem Pharmacol. 1961 Jul;7:7-16

Source: PubMed

3
S'abonner