Neonatal azithromycin administration for prevention of infant mortality

Catherine E Oldenburg, Ali Sié, Mamadou Bountogo, Alphonse Zakane, Guillaume Compaoré, Thierry Ouedraogo, Fla Koueta, Elodie Lebas, Jessica Brogdon, Fanice Nyatigo, Thuy Doan, Travis C Porco, Benjamin F Arnold, Thomas M Lietman, NAITRE Study Team, Catherine E Oldenburg, Ali Sié, Mamadou Bountogo, Alphonse Zakane, Guillaume Compaoré, Thierry Ouedraogo, Fla Koueta, Elodie Lebas, Jessica Brogdon, Fanice Nyatigo, Thuy Doan, Travis C Porco, Benjamin F Arnold, Thomas M Lietman, NAITRE Study Team

Abstract

Background: Biannual mass azithromycin administration reduces all-cause childhood mortality in some sub-Saharan African settings, with the largest effects in children aged 1-5 months. Azithromycin has not been distributed to children <1 month due to risk of infantile hypertrophic pyloric stenosis (IHPS).

Methods: This 1:1 placebo-controlled trial, randomized neonates aged 8-27 days to a single oral dose of azithromycin (20 mg/kg) or equivalent volume of placebo in 5 regions of Burkina Faso during 2019 and 2020. The primary outcome was all-cause mortality at 6 months of age. Infants were evaluated at 21 days after treatment and at 3 and 6 months of age for vital status; family and provider surveillance for IHPS continued throughout.

Results: Of 21,832 enrolled neonates, 10,898 were allocated to azithromycin and 10,934 to placebo. At 6 months of age, 92 infants had died, 42 (0.44%) in the azithromycin group and 50 (0.52%) in the placebo group (hazard ratio 0.85, 95% confidence interval 0.56 to 1.28, P=0.46). A single IHPS case was detected, which was in the azithromycin arm. Serious adverse events, including death and hospitalization within 28 days of treatment, occurred in 0.27% of infants in the azithromycin group and 0.14% in the placebo group, for an absolute risk difference 0.14 percentage points, 95% confidence interval 0.01 to 0.26.

Conclusions: Overall mortality was lower than anticipated when the trial was designed, thus limiting its power. The available data do not support the routine use of azithromycin for prevention of mortality in neonates in sub-Saharan African settings similar to the one in which this trial was conducted.

Trial registration: ClinicalTrials.gov NCT03682653.

Copyright: © 2022 Author(s), Massachusetts Medical Society. All rights reserved.

Figures

Figure 1.
Figure 1.
Screening, randomization, and follow-up of participants

References

    1. Wang H, Bhutta ZA, Coates MM, et al. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1725–1774. 10.1016/S0140-6736(16)31575-6.
    1. Golding N, Burstein R, Longbottom J, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet. 2017;390(10108):2171–2182. 10.1016/S0140-6736(17)31758-0.
    1. Lawn JE, Blencowe H, Oza S, et al. Every Newborn: progress, priorities, and potential beyond survival. Lancet. 2015;384(9938):189–205. doi:10.1016/S0140-6736(14)60496-7
    1. Keenan JD, Arzika AM, Maliki R, et al. Cause-specific mortality of children younger than 5 years in communities receiving biannual mass azithromycin treatment in Niger: verbal autopsy results from a cluster-randomised controlled trial. Lancet Glob Heal. 2020;8(2):288–295. doi:10.1016/S2214-109X(19)30540-6
    1. Keenan JD, Bailey RL, West SK, et al. Azithromycin to Reduce Childhood Mortality in Sub-Saharan Africa. N Engl J Med. 2018;378(17):1583–1592.
    1. Oldenburg CE, Arzika AM, Maliki R, et al. Optimizing the Number of Child Deaths Averted with Mass Azithromycin Distribution. Am J Trop Med Hyg. 2020;Epub ahead. doi:10.4269/ajtmh.19-0328
    1. Ranells JD, Carver JD, Kirby RS. Infantile Hypertrophic Pyloric Stenosis: Epidemiology, Genetics, and Clinical Update. Adv Pediatr. 2011;58(1):195–206. 10.1016/j.yapd.2011.03.005.
    1. Eberly MD, Eide MB, Thompson JL, Nylund CM. Azithromycin in Early Infancy and Pyloric Stenosis. Pediatrics. 2015;135(3):483–488. 10.1542/peds.2014-2026.
    1. Lund M, Pasternak B, Davidsen RB, et al. Use of macrolides in mother and child and risk of infantile hypertrophic pyloric stenosis: nationwide cohort study. BMJ. 2014;348(mar118):g1908–g1908. 10.1136/bmj.g1908.
    1. Gharehbaghi MM, Peirovifar A, Ghojazadeh M, Mahallei M. Efficacy of azithromycin for prevention of bronchopulmonary dysplasia (BPD). Turk J Med Sci. 2012;42(6):1070–1075. .
    1. Ballard HO, Anstead MI, Shook LA. Azithromycin in the extremely low birth weight infant for the prevention of Bronchopulmonary Dysplasia: a pilot study. Respir Res. 2007;8(1):1793–1799. 10.1186/1465-9921-8-41.
    1. Sie A, Bountogo M, Nebie E, et al. Neonatal azithromycin administration to prevent infant mortality: study protocol for a randomised controlled trial. BMJ Open. 2019;9(9):e031162. doi:10.1136/bmjopen-2019-031162
    1. Schulz KF, Grimes DA. Unequal group sizes in randomised trials: Guarding against guessing. Lancet. 2002;359(9310):966–970. doi:10.1016/S0140-6736(02)08029-7
    1. Schechter R, Torfs CP, Bateson TF. The epidemiology of infantile hypertrophic pyloric stenosis. Pediatr Perinat Epidemiol. 1997;11:407–427..
    1. Sommerfield T, Chalmers J, Youngson G, Heeley C, Fleming M, Thomson G. The changing epidemiology of infantile hypertrophic pyloric stenosis in Scotland. Arch Dis Child. 2008;93(12):1007–1011. 10.1136/adc.2007.128090.
    1. Chalya PL, Manyama M, Kayange NM, Mabula JB, Massenga A. Infantile hypertrophic pyloric stenosis at a tertiary care hospital in Tanzania: a surgical experience with 102 patients over a 5-year period. BMC Res Notes. November 2015:1–6..
    1. Tadesse A, Gadisa A. Infantile hypertrophic pyloric stenosis: A retrospective study from a tertiary hospital in Ethiopia. East Cent Afr J Surg. 2014;19(1):120–124. .
    1. Oldenburg CE, Arzika AM, Maliki R, et al. Safety of azithromycin in infants under six months of age in Niger: A community randomized trial. PLoS Negl Trop Dis. 2018;12(11):e0006950. doi:10.7910/DVN/MQYM5S.Funding
    1. Sie A, Dah C, Bountogo M, et al. Adverse events and clinic visits following a single dose of oral azithromycin among preschool children: a randomized placebo-controlled trial. Am J Trop Med Hyg. 2020:In press.
    1. Oron AP, Burstein R, Mercer LD, et al. Effect Modification by Baseline Mortality in the MORDOR Azithromycin Trial. Am J Trop Med Hyg. 2020;103(3):1295–1300. doi:10.4269/ajtmh.18-1004
    1. Doan T, Hinterwirth A, Worden L, et al. Gut microbiome alteration in MORDOR I: a community-randomized trial of mass azithromycin distribution. Nat Med. 2019;25(9):1370–1376. doi:10.1038/s41591-019-0533-0
    1. Oldenburg CE, Sie A, Coulibaly B, et al. Effect of commonly-used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: A randomized clinical trial. Open Forum Infect Dis. 2018;5(11):ofy289. doi:10.1093/ofid/ofy289

Source: PubMed

3
S'abonner