In-hospital mortality and successful weaning from venoarterial extracorporeal membrane oxygenation: analysis of 5,263 patients using a national inpatient database in Japan

Shotaro Aso, Hiroki Matsui, Kiyohide Fushimi, Hideo Yasunaga, Shotaro Aso, Hiroki Matsui, Kiyohide Fushimi, Hideo Yasunaga

Abstract

Background: The mortality rate of severely ill patients treated with venoarterial extracorporeal membrane oxygenation (VA-ECMO) remains unknown because of differences in patient background, clinical settings, and sample sizes between studies. We determined the in-hospital mortality of VA-ECMO patients and the proportion weaned from VA-ECMO using a national inpatient database in Japan.

Methods: Patients aged ≥ 19 years who received VA-ECMO during hospitalization for cardiogenic shock, pulmonary embolism, hypothermia, poisoning, or trauma between 1 July 2010 and 31 March 2013 were identified, using The Japanese Diagnosis Procedure Combination national inpatient database.

Results: The primary outcome was in-hospital mortality and the secondary outcome was the proportion weaned from VA-ECMO. A total of 5263 patients received VA-ECMO during the study period. The majority of patients had cardiogenic shock (n = 4,658). The number of patients weaned from VA-ECMO was 3389 (64.4%) and in-hospital mortality after weaning from VA-ECMO was 1994 (37.9%). In-hospital mortality without cardiac arrest in the cardiogenic shock group was significantly lower than that in patients with cardiac arrest (70.5% vs. 77.1%, p <0.001). In the multivariable logistic regression including multiple imputation, higher age and greater or smaller body mass index were significantly associated with in-hospital mortality, whereas hospital volume was not associated with such mortality.

Conclusions: The present nationwide study showed high mortality rates in patients who received VA-ECMO, and in particular in patients with cardiogenic shock and in patients with cardiac arrest. Weaning from VA-ECMO did not necessarily result in survival. Further studies are warranted to clarify risk-adjusted mortality of VA-ECMO using more detailed data on patient background.

Keywords: Age factors; Cardiac arrest; Cardiogenic shock; Extracorporeal membrane oxygenation; Mortality.

References

    1. Ventetuolo CE, Muratore CS. Extracorporeal life support in critically ill adults. Am J Respir Crit Care Med. 2014;190:497–508. doi: 10.1164/rccm.201404-0736CI.
    1. Kurose M, Okamoto K, Sato T, Ogata K, Yasumoto M, Terasaki H, et al. Extracorporeal life support for patients undergoing prolonged external cardiac massage. Resuscitation. 1993;25:35–40. doi: 10.1016/0300-9572(93)90004-A.
    1. Wu M-Y, Tseng Y-H, Chang Y-S, Tsai F-C, Lin P-J. Using extracorporeal membrane oxygenation to rescue acute myocardial infarction with cardiopulmonary collapse: the impact of early coronary revascularization. Resuscitation. 2013;84:940–5. doi: 10.1016/j.resuscitation.2012.12.019.
    1. Tang GHL, Malekan R, Kai M, Lansman SL, Spielvogel D. Peripheral venoarterial extracorporeal membrane oxygenation improves survival in myocardial infarction with cardiogenic shock. J Thorac Cardiovasc Surg. 2013;145:e32–3. doi: 10.1016/j.jtcvs.2012.12.038.
    1. Takayama H, Truby L, Koekort M, Uriel N, Colombo P, Mancini DM, et al. Clinical outcome of mechanical circulatory support for refractory cardiogenic shock in the current era. J Heart Lung Transplant. 2013;32:106–11. doi: 10.1016/j.healun.2012.10.005.
    1. Smedira NG, Moazami N, Golding CM, McCarthy PM, Apperson-Hansen C, Blackstone EH, et al. Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: survival at five years. J Thorac Cardiovasc Surg. 2001;122:92–102. doi: 10.1067/mtc.2001.114351.
    1. Magovern GJ, Simpson KA. Extracorporeal membrane oxygenation for adult cardiac support: the Allegheny experience. Ann Thorac Surg. 1999;68:655–61. doi: 10.1016/S0003-4975(99)00581-0.
    1. Combes A, Leprince P, Luyt C-E, Bonnet N, Trouillet J-L, Leger P, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36:1404–11. doi: 10.1097/CCM.0b013e31816f7cf7.
    1. Chung S-Y, Sheu J-J, Lin Y-J, Sun C-K, Chang L-T, Chen Y-L, et al. Outcome of patients with profound cardiogenic shock after cardiopulmonary resuscitation and prompt extracorporeal membrane oxygenation support. Circ J. 2012;76:1385–92. doi: 10.1253/circj.CJ-11-1015.
    1. Chen J-S, Ko W-J, Yu H-Y, Lai L-P, Huang S-C, Chi N-H, et al. Analysis of the outcome for patients experiencing myocardial infarction and cardiopulmonary resuscitation refractory to conventional therapies necessitating extracorporeal life support rescue. Crit Care Med. 2006;34:950–7. doi: 10.1097/01.CCM.0000206103.35460.1F.
    1. Beurtheret S, Mordant P, Paoletti X, Marijon E, Celermajer DS, Leger P, et al. Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program) Eur Heart J. 2013;34:112–20. doi: 10.1093/eurheartj/ehs081.
    1. Hsu K-H, Chi N-H, Yu H-Y, Wang C-H, Huang S-C, Wang S-S, et al. Extracorporeal membranous oxygenation support for acute fulminant myocarditis: analysis of a single center’s experience. Eur J Cardiothorac Surg. 2011;40:682–8.
    1. Chen Y-S, Yu H-Y, Huang S-C, Chiu K-M, Lin T-Y, Lai L-P, et al. Experience and result of extracorporeal membrane oxygenation in treating fulminant myocarditis with shock: what mechanical support should be considered first? J Heart Lung Transplant. 2005;24:81–7. doi: 10.1016/j.healun.2003.09.038.
    1. Asaumi Y, Yasuda S, Morii I, Kakuchi H, Otsuka Y, Kawamura A, et al. Favourable clinical outcome in patients with cardiogenic shock due to fulminant myocarditis supported by percutaneous extracorporeal membrane oxygenation. Eur Heart J. 2005;26:2185–92. doi: 10.1093/eurheartj/ehi411.
    1. Extracorporeal Life Support Organization. ELSO guidelines for adult cardiac failure v1.3. Michigan, USA, 2015. . Accessed 1 July 2015.
    1. Walpoth BH, Walpoth-Aslan BN, Mattle HP, Radanov BP, Schoroth G, Schaeffler L, et al. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med. 1997;337(21):1500–1505. doi: 10.1056/NEJM199711203372103.
    1. Ruttmann E, Weissenbacher A, Ulmer H, Muller L, Hofer D, Kilo J, et al. Prolonged extracorporeal membrane oxygenation-assisted support provides improved survival in hypothermic patients with cardiocirculatory arrest. J Thorac Cardiovasc Surg. 2007;134:594–600. doi: 10.1016/j.jtcvs.2007.03.049.
    1. Morita S, Inokuchi S, Yamagiwa T, Iizuka S, Yamamoto R, Aoki H, et al. Efficacy of portable and percutaneous cardiopulmonary bypass rewarming versus that of conventional internal rewarming for patients with accidental deep hypothermia. Crit Care Med. 2011;39:5–9. doi: 10.1097/CCM.0b013e31820edd04.
    1. Farstad M, Andersen KS, Koller M-E, Grong K, Segadal L, Husby P. Rewarming from accidental hypothermia by extracorporeal circulation. A retrospective study. Eur J Cardiothorac Surg. 2001;20:58–64. doi: 10.1016/S1010-7940(01)00713-8.
    1. Schmidt M, Burrell A, Roberts L, Bailey M, Sheldrake J, Rycus PT, et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J. 2015;36:2246–56. doi: 10.1093/eurheartj/ehv194.
    1. Hubbard AE, Ahern J, Fleischer NL, Van der Laan M, Lippman SA, Jewell N, et al. To GEE or not to GEE: comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology. 2010;21:467–74. doi: 10.1097/EDE.0b013e3181caeb90.
    1. Rubin DB, Schenker N. Multiple imputation in health-care databases: an overview and some applications. Stat Med. 1991;10:585–98. doi: 10.1002/sim.4780100410.
    1. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi: 10.1136/bmj.b2393.
    1. Higo T. A classical but useful predictor of future left ventricular assist device explantation. Circ J. 2015;79:505–7. doi: 10.1253/circj.CJ-15-0107.
    1. Rupprecht L, Flörchinger B, Schopka S, Schmid C, Philipp A, Lunz D, et al. Cardiac decompression on extracorporeal life support: a review and discussion of the literature. ASAIO J. 2013;59:547–53. doi: 10.1097/MAT.0b013e3182a4b2f6.
    1. Kern M, Aguirre F, Tatineni S, Penick D, Serota H, Donohue T, et al. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. J Am Coll Cardiol. 1993;21:359–68. doi: 10.1016/0735-1097(93)90676-R.

Source: PubMed

3
S'abonner