Ultrasound-guided erector spinae plane catheter versus video-assisted paravertebral catheter placement in minimally invasive thoracic surgery: comparing continuous infusion analgesic techniques on early quality of recovery, respiratory function and chronic persistent surgical pain: study protocol for a double-blinded randomised controlled trial

Aneurin Moorthy, Aisling Ni Eochagain, Eamon Dempsey, Donal Buggy, Aneurin Moorthy, Aisling Ni Eochagain, Eamon Dempsey, Donal Buggy

Abstract

Background: Compared to conventional thoracotomy, minimally invasive thoracic surgery (MITS) can reduce postoperative pain, reduce tissue trauma and contribute to better recovery. However, it still causes significant acute postoperative pain. Truncal regional anaesthesia techniques such as paravertebral and erector spinae blocks have shown to contribute to postoperative analgesia after MITS. Satisfactory placement of an ultrasound-guided thoracic paravertebral catheter can be technically challenging compared to an ultrasound-guided erector spinae catheter. However, in MITS, an opportunity arises for directly visualised placement of a paravertebral catheter by the surgeon under thoracoscopic guidance. Alongside with thoracic epidural, a paravertebral block is considered the "gold standard" of thoracic regional analgesic techniques. To the best of our knowledge, there are no randomised controlled trials comparing surgeon-administered paravertebral catheter and anaesthesiologist-assisted erector spinae catheter for MITS in terms of patient-centred outcomes such as quality of recovery.

Methods: This trial will be a prospective, double-blinded randomised controlled trial. A total of 80 eligible patients will be randomly assigned to receive either an anaesthesiologist-assisted ultrasound-guided erector spinae catheter or a surgeon-assisted video-assisted paravertebral catheter, in a 1:1 ratio following induction of general anaesthesia for minimally assisted thoracic surgery. Both groups will receive the same standardised analgesia protocol for both intra- and postoperative periods. The primary outcome is defined as Quality of Recovery (QoR-15) score between the two groups at 24 h postoperative. Secondary outcomes include assessment of chronic persistent surgical pain (CPSP) at 3 months postoperative using the Brief Pain Inventory (BPI) Short Form and Short Form McGill (SF-15) questionnaires, assessment of postoperative pulmonary function, area under the curve for Verbal Rating Score for pain at rest and on deep inspiration versus time over 48 h, total opioid consumption over 48 h, QoR-15 at 48 h, and postoperative complications and morbidity as measured by the Comprehensive Complication Index.

Discussion: Despite surgical advancements in thoracic surgery, severe acute postoperative pain following MITS is still prevailing. This study will provide recommendations about the efficacy of an anaesthesia-administered ultrasound-guided erector spinae catheter or surgeon-administered, video-assisted paravertebral catheter techniques for early quality of recovery following MITS.

Trial registration: ClinicalTrials.gov NCT04729712 . Registered on 28 January 2021. All items from the World Health Organization Trial Registration Data Set have been included.

Keywords: Chronic persistent surgical pain; Erector spinae catheter; Minimal invasive thoracic surgery; Paravertebral catheter; Quality of recovery; Randomised controlled trial.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Study flow chart
Fig. 2
Fig. 2
Analgesia and anti-emetic protocol
Fig. 3
Fig. 3
Time schedule of enrolment, interventions, assessments and visits for participants

References

    1. Wong MKH, Sit AKY, Au TWK. Minimally invasive thoracic surgery: beyond surgical access. J Thorac Dis. 2018;10(Suppl 16):S1884–S1S91. doi: 10.21037/jtd.2018.05.196.
    1. Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, Brunelli A, Cerfolio RJ, Gonzalez M, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERAS(R)) Society and the European Society of Thoracic Surgeons (ESTS) Eur J Cardiothorac Surg. 2019;55(1):91–115. doi: 10.1093/ejcts/ezy301.
    1. Nagahiro I, Andou A, Aoe M, Sano Y, Date H, Shimizu N. Pulmonary function, postoperative pain, and serum cytokine level after lobectomy: a comparison of VATS and conventional procedure. Ann Thorac Surg. 2001;72(2):362–365. doi: 10.1016/s0003-4975(01)02804-1.
    1. Li WW, Lee TW, Lam SS, Ng CS, Sihoe AD, Wan IY, et al. Quality of life following lung cancer resection: video-assisted thoracic surgery vs thoracotomy. Chest. 2002;122(2):584–589. doi: 10.1378/chest.122.2.584.
    1. Schug SA, Bruce J. Risk stratification for the development of chronic postsurgical pain. Pain Rep. 2017;2(6):e627. doi: 10.1097/PR9.0000000000000627.
    1. Finnerty DT, McMahon A, McNamara JR, Hartigan SD, Griffin M, Buggy DJ. Comparing erector spinae plane block with serratus anterior plane block for minimally invasive thoracic surgery: a randomised clinical trial. Br J Anaesth. 2020;125(5):802–810. doi: 10.1016/j.bja.2020.06.020.
    1. Karmakar MK. Thoracic paravertebral block. Anesthesiology. 2001;95(3):771–780. doi: 10.1097/00000542-200109000-00033.
    1. Yeung JH, Gates S, Naidu BV, Wilson MJ, Gao SF. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016;2:CD009121. doi: 10.1002/14651858.CD009121.pub2.
    1. Marhofer P, Feigl GC, Hopkins PM. Fascial plane blocks in regional anaesthesia: how problematic is simplification? Br J Anaesth. 2020;125(5):649–651. doi: 10.1016/j.bja.2020.08.013.
    1. Hill SE, Keller RA, Stafford-Smith M, Grichnik K, White WD, D'Amico TA, et al. Efficacy of single-dose, multilevel paravertebral nerve blockade for analgesia after thoracoscopic procedures. Anesthesiology. 2006;104(5):1047–1053. doi: 10.1097/00000542-200605000-00022.
    1. Pawa A, Wojcikiewicz T, Barron A, et al. Paravertebral blocks: anatomical, practical, and future concepts. Curr Anesthesiol Rep. 2019;9:263–270. doi: 10.1007/s40140-019-00328-x.
    1. Shelley B, Macfie A. Where now for thoracic paravertebral blockade? Anaesthesia. 2012;67(12):1317–1320. doi: 10.1111/j.1365-2044.2012.07310.x.
    1. Cowie B, McGlade D, Ivanusic J, Barrington MJ. Ultrasound-guided thoracic paravertebral blockade: a cadaveric study. Anesth Analg. 2010;110(6):1735–1739. doi: 10.1213/ANE.0b013e3181dd58b0..
    1. Luyet C, Herrmann G, Ross S, Vogt A, Greif R, Moriggl B, et al. Ultrasound-guided thoracic paravertebral puncture and placement of catheters in human cadavers: where do catheters go? Br J Anaesth. 2011;106(2):246–254. doi: 10.1093/bja/aeq309.
    1. Xu Y, Li XK, Zhou H, Cong ZZ, Wu WJ, Qiang Y, et al. Paravertebral block with modified catheter under surgeon’s direct vision after video-assisted thoracoscopic lobectomy. J Thorac Dis. 2020;12(8):4115-4125DOI: 10.21037/jtd-20-1068B.
    1. Davies RG, Myles PS, Graham JM. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy--a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2006;96(4):418-426. DOI: 10.1093/bja/ael020.
    1. Stark PA, Myles PS, Burke JA. Development and psychometric evaluation of a postoperative quality of recovery score: the QoR-15. Anesthesiology. 2013;118(6):1332-1340. DOI: 10.1097/ALN.0b013e318289b84b.
    1. Myles PS, Myles DB, Galagher W, Chew C, MacDonald N, Dennis A. Minimal clinically important difference for three quality of recovery scales. Anesthesiology. 2016;125(1):39-45. DOI: 10.1097/ALN.0000000000001158.
    1. Hickey GL, Grant SW, Dunning J, Siepe M. Statistical primer: sample size and power calculations-why, when and how? Eur J Cardiothorac Surg. 2018;54(1):4-9. DOI: 10.1093/ejcts/ezy169.
    1. Myles PS. Measuring quality of recovery in perioperative clinical trials. Curr Opin Anaesthesiol. 2018;31(4):396-401DOI: 10.1097/ACO.0000000000000612.
    1. Kleif J, Waage J, Christensen KB, Gogenur I. Systematic review of the QoR-15 score, a patient-reported outcome measure measuring quality of recovery after surgery and anaesthesia. Br J Anaesth. 2018;120(1):28-36. DOI: 10.1016/j.bja.2017.11.013.
    1. Tan G, Jensen MP, Thornby JI, Shanti BF. Validation of the Brief Pain Inventory for chronic nonmalignant pain. J Pain. 2004;5(2):133-137. DOI: 10.1016/j.jpain.2003.12.005.
    1. Carroll IR, Hah JM, Barelka PL, Wang CK, Wang BM, Gillespie MJ, et al. Pain duration and resolution following surgery: an inception cohort study. Pain Med. 2015;16(12):2386-2396. DOI: 10.1111/pme.12842.
    1. Adelmanesh F, Jalali A, Attarian H, Farahani B, Ketabchi SM, Arvantaj A, et al. Reliability, validity, and sensitivity measures of expanded and revised version of the short-form McGill Pain Questionnaire (SF-MPQ-2) in Iranian patients with neuropathic and non-neuropathic pain. Pain Med. 2012;13(12):1631-1636. DOI: 10.1111/j.1526-4637.2012.01517.x.
    1. Lovejoy TI, Turk DC, Morasco BJ. Evaluation of the psychometric properties of the revised short-form McGill Pain Questionnaire. J Pain. 2012;13(12):1250-1257. DOI: 10.1016/j.jpain.2012.09.011.
    1. Cappelleri JC, Bushmakin AG, Zlateva G, Sadosky A. Pain responder analysis: use of area under the curve to enhance interpretation of clinical trial results. Pain Pract. 2009;9(5):348-353. DOI: 10.1111/j.1533-2500.2009.00293.x.
    1. Slankamenac K, Graf R, Barkun J, Puhan MA, Clavien PA. The comprehensive complication index: a novel continuous scale to measure surgical morbidity. Ann Surg. 2013;258(1):1-7. DOI: 10.1097/SLA.0b013e318296c732.
    1. Tulgar S, Kapakli MS, Senturk O, Selvi O, Serifsoy TE, Ozer Z. Evaluation of ultrasound-guided erector spinae plane block for postoperative analgesia in laparoscopic cholecystectomy: a prospective, randomized, controlled clinical trial. J Clin Anesth. 2018;49:101-106. DOI: 10.1016/j.jclinane.2018.06.019.
    1. Gurkan Y, Aksu C, Kus A, Yorukoglu UH, Kilic CT. Ultrasound guided erector spinae plane block reduces postoperative opioid consumption following breast surgery: a randomized controlled study. J Clin Anesth. 2018;50:65-68. DOI: 10.1016/j.jclinane.2018.06.033.
    1. Krishna SN, Chauhan S, Bhoi D, Kaushal B, Hasija S, Sangdup T, et al. Bilateral erector spinae plane block for acute post-surgical pain in adult cardiac surgical patients: a randomized controlled trial. J Cardiothorac Vasc Anesth. 2019;33(2):368-375. DOI: 10.1053/j.jvca.2018.05.050.
    1. Finnerty D, Ni Eochagain A, Ahmed M, Poynton A, Butler JS, Buggy DJ. A randomised trial of bilateral erector spinae plane block vs. no block for thoracolumbar decompressive spinal surgery. Anaesthesia. 2021;76(11):1499-1503. DOI: 10.1111/anae.15488.
    1. Horth D, Sanh W, Moisiuk P, O'Hare T, Shargall Y, Finley C, et al. Continuous erector spinae plane block versus intercostal nerve block in patients undergoing video-assisted thoracoscopic surgery: a pilot randomized controlled trial. Pilot Feasibility Stud. 2021;7(1):56. DOI: 10.1186/s40814-021-00801-7.
    1. Brunelli A, Thomas C, Dinesh P, Lumb A. Enhanced recovery pathway versus standard care in patients undergoing video-assisted thoracoscopic lobectomy. J Thorac Cardiovasc Surg. 2017;154(6):2084-2090. DOI: 10.1016/j.jtcvs.2017.06.037.
    1. Piccioni F, Segat M, Falini S, Umari M, Putina O, Cavaliere L, et al. Enhanced recovery pathways in thoracic surgery from Italian VATS Group: perioperative analgesia protocols. J Thorac Dis. 2018;10(Suppl 4):S555-SS63. DOI: 10.21037/jtd.2017.12.86.
    1. Ong CK, Lirk P, Seymour RA, Jenkins BJ. The efficacy of preemptive analgesia for acute postoperative pain management: a meta-analysis. Anesth Analg. 2005;100(3):757-773. DOI: 10.1213/01.ANE.0000144428.98767.0E.
    1. Dunn LK, Yerra S, Fang S, Hanak MF, Leibowitz MK, Tsang S, et al. Incidence and risk factors for chronic postoperative opioid use after major spine surgery: a cross-sectional study with longitudinal outcome. Anesth Analg. 2018;127(1):247-254. DOI: 10.1213/ANE.0000000000003338.
    1. Chazapis M, Walker EM, Rooms MA, Kamming D, Moonesinghe SR. Measuring quality of recovery-15 after day case surgery. Br J Anaesth. 2016;116(2):241-248. DOI: 10.1093/bja/aev413.

Source: PubMed

3
S'abonner