Kidney volume and function in autosomal dominant polycystic kidney disease

Eiji Higashihara, Kikuo Nutahara, Takatsugu Okegawa, Toshihide Shishido, Mitsuhiro Tanbo, Kuninori Kobayasi, Toshiaki Nitadori, Eiji Higashihara, Kikuo Nutahara, Takatsugu Okegawa, Toshihide Shishido, Mitsuhiro Tanbo, Kuninori Kobayasi, Toshiaki Nitadori

Abstract

Background: The significance of total kidney volume (TKV) as a biomarker of kidney function in autosomal dominant polycystic kidney disease (ADPKD) is controversial and has been reappraised.

Methods: Between 2007 and 2012, 64 patients were followed with a mean 39.7-month observation period. TKV measurements by magnetic resonance imaging and estimation of renal function with estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease equation and 24-h urine creatinine clearance were repeated annually.

Results: TKV and its adjusted parameters (height-adjusted, body surface area-adjusted and log-converted TKV [log-TKV]) correlated with eGFR significantly. Among them, the correlation coefficient of log-TKV was most significant (r = -0.6688, p < 0.001). The eGFR slope correlated negatively with TKV slope (p < 0.05). TKV increased faster and became larger as chronic kidney disease (CKD) stage advanced. As age advanced, eGFR declined significantly (p < 0.001), but the eGFR slope remained constant. There was no significant correlation between TKV and age, but the log-TKV slope became smaller as age advanced. If baseline TKV was large, the eGFR slope was steeper (p < 0.05), which suggests that eGFR declines faster in patients with larger kidney volume.

Conclusions: TKV is confirmed as a clinically meaningful surrogate marker in ADPKD. Log-TKV correlates with eGFR most significantly. Higher rates of kidney enlargement and larger kidney volume are associated with a more rapid decrease in kidney function. Kidney function decreased faster as CKD stage advanced, but its declining slope did not change significantly by age, at least after ~30 years of age.

Figures

Fig. 1
Fig. 1
Correlation of a total kidney volume (TKV), b height-adjusted TKV (ht-TKV), c body surface area-adjusted TKV (bs-TKV) and d log-converted TKV (log-TKV) to estimated glomerular filtration rate (eGFR). These values are final measurements. The correlation coefficients (r) of all TKV-related parameters are significant. Among them, r of log-TKV is most significant
Fig. 2
Fig. 2
a Correlation coefficient (r) between baseline TKV and eGFR slope is significant (p = 0.0349). b The correlation coefficient (r) between TKV slope and eGFR slope is significant (p = 0.0385)
Fig. 3
Fig. 3
Individual TKV data and the age at measurement are plotted and connected according to chronic kidney disease (CKD) stages. Finally measured eGFR was used to indicate the CKD stage category
Fig. 4
Fig. 4
a Correlation coefficient (r) between eGFR and age is highly significant. Age and eGFR are those measured at the final time. b There was no significant correlation coefficient (r) between age and the slope of eGFR. Age is at the final measurement
Fig. 5
Fig. 5
The correlation coefficients (r) between age and TKV a and between age and log-TKV b are not significant. c The TKV slope tends to decrease as age advances, but r between age and TKV slope is not significant. d The log-TKV slope decreased significantly as age increased. The r between age and log-TKV slope is significant (p < 0.01). Age, TKV and log-TKV are final measurements

References

    1. Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–157. doi: 10.2215/CJN.00330705.
    1. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369:1287–1301. doi: 10.1016/S0140-6736(07)60601-1.
    1. Higashihara E, Nutahara K, Kojima M, Tamakoshi A, Ohno Y, Sasaki H, Kurokawa K. Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron. 1998;80:421–427. doi: 10.1159/000045214.
    1. Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, King BF, Jr, Wetzel LH, Baumgarten DA, Kenney PJ, Harris PC, Klahr S, Bennett WM, Hirschman GN, Meyers CM, Zhang X, Zhu F, Miller JP, CRISP Investigators Volume progression in polycystic kidney disease. N Engl J Med. 2006;354:2122–2130. doi: 10.1056/NEJMoa054341.
    1. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, Li J, King BF, Martin D, Wetzel LH, Lockhart ME, Harris PC, Moxey-Mims M, Flessner M, Bennett WM, Grantham JJ. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–486. doi: 10.2215/CJN.09500911.
    1. Perico N, Antiga L, Caroli A, Ruggenenti P, Fasolini G, Cafaro M, Ondei P, Rubis N, Diadei O, Gherardi G, Prandini S, Panozo A, Bravo RF, Carminati S, De Leon FR, Gaspari F, Cortinovis M, Motterlini N, Ene-Iordache B, Remuzzi A, Remuzzi G. Sirolimus therapy to halt progression of ADPKD. J Am Soc Nephrol. 2010;21:1031–1040. doi: 10.1681/ASN.2009121302.
    1. Walz G, Budde K, Mannaa M, Nürnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Hörl WH, Obermüller N, Arns W, Pavenstädt H, Gaedeke J, Büchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:830–840. doi: 10.1056/NEJMoa1003491.
    1. Serra AL, Poster D, Kistler AD, Karauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wüthrich RP. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–829. doi: 10.1056/NEJMoa0907419.
    1. Kistler AD, Poster D, Krauer F, Weishaupt D, Raina S, Senn O, Binet I, Spanaus K, Wüthrich RP, Serra AL. Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int. 2009;75:235–241. doi: 10.1038/ki.2008.558.
    1. Higashihara E, Horie S, Muto S, Mochizuki T, Nishio S, Nutahara K. Renal disease progression in autosomal dominant polycystic kidney disease. Clin Exp Nephrol. 2012;16:622–628. doi: 10.1007/s10157-012-0611-9.
    1. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–992. doi: 10.1053/j.ajkd.2008.12.034.
    1. Work Group and evidence review team membership K/DOQI clinical practice guidelines on chronic kidney disease. Am J Kidney Dis. 2002;39:S1–S216.
    1. Bae KT, Commean PK, Lee J. Volumetric measurement of renal cysts and parenchyma using MRI: phantoms and patients with polycystic kidney disease. J Comput Assist Tomogr. 2000;24:614–619. doi: 10.1097/00004728-200007000-00019.
    1. Torres VE, Grantham JJ, Chapman AB, Mrug M, Bae KT, King BF, Jr, Wetzel LH, Martin D, Lockhart ME, Bennett WM, Moxey-Mims M, Abebe KZ, Lin Y, Bost JE, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:640–647. doi: 10.2215/CJN.03250410.
    1. Torres VE, King BF, Chapman AB, Brummer ME, Bae KT, Glockner JF, Arya K, Risk D, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Meyers CM, Zhang X, Thompson PA, Miller JP, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2007;2:112–120. doi: 10.2215/CJN.00910306.
    1. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, Kenney PJ, King BF, Jr, Glockner JF, Wetzel LH, Brummer ME, O’Neill WC, Robbin ML, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort Renal structure in early autosomal—dominant polycystic kidney disease (ADPKD): The consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int. 2003;64:1035–1045. doi: 10.1046/j.1523-1755.2003.00185.x.
    1. Franz KA, Reubi FC. Rate of functional deterioration in polycystic kidney disease. Kidney Int. 2009;23:526–529. doi: 10.1038/ki.1983.51.
    1. Wong H, Vivian L, Weiler G, Filler G. Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis. 2004;43:624–628. doi: 10.1053/j.ajkd.2003.12.026.
    1. Meijer E, Rook M, Tent H, Navis G, van der Jagt EJ, de Jong PE, Gansevoort RT. Early renal abnormalities in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:1091–1098. doi: 10.2215/CJN.00360110.
    1. Helal I, Reed B, McFann K, Yan XD, Fick-Brosnahan GM, Cadnapaphornchai M, Schrier RW. Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:2439–2443. doi: 10.2215/CJN.01010211.
    1. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249:F324–F337.
    1. Rule AD, Torres VE, Chapman AB, Grantham JJ, Guay-Woodford LM, Bae KT, Klahr S, Bennett WM, Meyers CM, Thompson PA, Miller JP, CRISP Consortium Comparison of methods for determining renal function decline in early autosomal dominant polycystic kidney disease: the consortium of radiologic imaging studies of polycystic kidney disease cohort. J Am Soc Nephrol. 2006;17:854–862. doi: 10.1681/ASN.2005070697.

Source: PubMed

3
S'abonner