Molecular Typing of Staphylococcus aureus Isolated from Patients with Autosomal Dominant Hyper IgE Syndrome

Inka Sastalla, Kelli W Williams, Erik D Anderson, Ian A Myles, Jensen D Reckhow, Marlene Espinoza-Moraga, Alexandra F Freeman, Sandip K Datta, Inka Sastalla, Kelli W Williams, Erik D Anderson, Ian A Myles, Jensen D Reckhow, Marlene Espinoza-Moraga, Alexandra F Freeman, Sandip K Datta

Abstract

Autosomal dominant hyper IgE syndrome (AD-HIES) is a primary immunodeficiency caused by a loss-of-function mutation in the Signal Transducer and Activator of Transcription 3 (STAT3). This immune disorder is clinically characterized by increased susceptibility to cutaneous and sinopulmonary infections, in particular with Candida and Staphylococcus aureus. It has recently been recognized that the skin microbiome of patients with AD-HIES is altered with an overrepresentation of certain Gram-negative bacteria and Gram-positive staphylococci. However, these alterations have not been characterized at the species- and strain-level. Since S. aureus infections are influenced by strain-specific expression of virulence factors, information on colonizing strain characteristics may provide insights into host-pathogen interactions and help guide management strategies for treatment and prophylaxis. The aim of this study was to determine whether the immunodeficiency of AD-HIES selects for unique strains of colonizing S. aureus. Using multi-locus sequence typing (MLST), protein A (spa) typing, and PCR-based detection of toxin genes, we performed a detailed analysis of the S. aureus isolates (n = 13) found on the skin of twenty-one patients with AD-HIES. We found a low diversity of sequence types, and an abundance of strains that expressed methicillin resistance, Panton-Valentine leukocidin (PVL), and staphylococcal enterotoxins K and Q (SEK, SEQ). Our results indicate that patients with AD-HIES may often carry antibiotic-resistant strains that harbor key virulence factors.

Keywords: Job’s Syndrome; STAT3; Staphylococcus aureus; multi-locus sequence typing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Agar plate phenotypes of select staphylococcal isolates from patients with AD-HIES. (A) Isolate P-17 on spectra MRSA plate. The blue colony represents a phosphatase-positive isolate that was confirmed to be S. aureus. The white colony represents a phosphatase-negative strain that was identified as S. haemolyticus. (B) Isolate P-19 on sheep blood agar plate. The large, yellow colony was identified as S. aureus; the small, white colony was identified as S. hominis.
Figure 2
Figure 2
Detection of select toxin genes in S. aureus strains isolated from patients with AD-HIES. Presence of genes for Panton-Valentine leukocidin (pvl) and two superantigens (sek/seq) were assessed by PCR. As a DNA template control, the housekeeping gene encoding for gyrase A (gyrA) was partially amplified.
Figure 3
Figure 3
Hemolysis phenotype of S. aureus strains isolated from patients with AD-HIES. Hemolysis on sheep (S), rabbit (R), and human (H) blood agar is shown.

References

    1. Lowy F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998;339:520–532. doi: 10.1056/NEJM199808203390806.
    1. Ferry T., Perpoint T., Vandenesch F., Etienne J. Virulence determinants in Staphylococcus aureus and their involvement in clinical syndromes. Curr. Infect. Dis. Rep. 2005;7:420–428. doi: 10.1007/s11908-005-0043-8.
    1. Chambers H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 2001;7:178–182. doi: 10.3201/eid0702.010204.
    1. Moreno F., Crisp C., Jorgensen J.H., Patterson J.E. Methicillin-resistant Staphylococcus aureus as a community organism. Clin. Infect. Dis. 1995;21:1308–1312. doi: 10.1093/clinids/21.5.1308.
    1. Carrel M., Perencevich E.N., David M.Z. USA300 Methicillin-Resistant Staphylococcus aureus, United States, 2000–2013. Emerg. Infect. Dis. 2015;21:1973–1980. doi: 10.3201/eid2111.150452.
    1. Welte K., Zeidler C. Severe congenital neutropenia. Hematol. Oncol. Clin. N. Am. 2009;23:307–320. doi: 10.1016/j.hoc.2009.01.013.
    1. Quie P.G., White J.G., Holmes B., Good R.A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood. J. Clin. Investig. 1967;46:668–679. doi: 10.1172/JCI105568.
    1. Guide S.V., Stock F., Gill V.J., Anderson V.L., Malech H.L., Gallin J.I., Holland S.M. Reinfection, rather than persistent infection, in patients with chronic granulomatous disease. J. Infect. Dis. 2003;187:845–853. doi: 10.1086/368388.
    1. Holland S.M., DeLeo F.R., Elloumi H.Z., Hsu A.P., Uzel G., Brodsky N., Freeman A.F., Demidowich A., Davis J., Turner M.L., et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 2007;357:1608–1619. doi: 10.1056/NEJMoa073687.
    1. Minegishi Y., Saito M., Tsuchiya S., Tsuge I., Takada H., Hara T., Kawamura N., Ariga T., Pasic A., Stojkovic O., et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–1062. doi: 10.1038/nature06096.
    1. Kane A., Deenick E.K., Ma C.S., Cook M.C., Uzel G., Tangye S.G. STAT3 is a central regulator of lymphocyte differentiation and function. Curr. Opin. Immunol. 2014;28:49–57. doi: 10.1016/j.coi.2014.01.015.
    1. Milner J.D., Brenchley J.M., Laurence A., Freeman A.F., Hill B.J., Elias K.M., Kanno Y., Spalding C., Elloumi H.Z., Paolson M.L., et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–776. doi: 10.1038/nature06764.
    1. Minegishi Y., Saito M., Nagasawa M., Takada H., Hara T., Tsuchiya S., Agematsu K., Yamada M., Kawamura N., Ariga T., et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J. Exp. Med. 2009;206:1291–1301. doi: 10.1084/jem.20082767.
    1. Oh J., Freeman A.F., Program N.C.S., Park M., Sokolic R., Candotti F., Holland S.M., Segre J.A., Kong H.H. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23:2103–2114. doi: 10.1101/gr.159467.113.
    1. Smeekens S.P., Huttenhower C., Riza A., van de Veerdonk F.L., Zeeuwen P.L.J.M., Schalkwijk J., van der Meer J.W.M., Xavier R.J., Netea M.G., Gevers D. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J. Innate Immun. 2014;6:253–262. doi: 10.1159/000351912.
    1. Severity scoring of atopic dermatitis: the SCORAD index Consensus Report of the European Task Force on Atopic Dermatitis. Dermatology. 1993;186:23–31.
    1. Hallin M., Friedrich A.W., Struelens M.J. spa typing for epidemiological surveillance of Staphylococcus aureus. Methods Mol. Biol. 2009;551:189–202. doi: 10.1007/978-1-60327-999-4_15.
    1. Panton P.N., Camb M.B., Valentine F.C.O. Staphylococcal Toxin. Lancet. 1932;219:506–508. doi: 10.1016/S0140-6736(01)24468-7.
    1. Wiseman G.M. The hemolysins of Staphylococcus aureus. Bacteriol. Rev. 1975;39:317–344.
    1. Vandenesch F., Lina G., Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front. Cell Infect. Microbiol. 2012;2:12. doi: 10.3389/fcimb.2012.00012.
    1. Schaumburg F., Alabi A.S., Peters G., Becker K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. 2014;20:589–596. doi: 10.1111/1469-0691.12690.
    1. Borjesson S., Matussek A., Melin S., Lofgren S., Lindgren P.E. Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: an uncharted threat? J. Appl. Microbiol. 2010;108:1244–1251. doi: 10.1111/j.1365-2672.2009.04515.x.
    1. Lindsay J.A., Holden M.T. Staphylococcus aureus: Superbug, super genome? Trends Microbiol. 2004;12:378–385. doi: 10.1016/j.tim.2004.06.004.
    1. Gillet Y., Issartel B., Vanhems P., Fournet J.C., Lina G., Bes M., Vandenesch F., Piémont Y., Brousse N., Floret D., et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359:753–759. doi: 10.1016/S0140-6736(02)07877-7.
    1. Parker D., Ryan C.L., Alonzo F., 3rd, Torres V.J., Planet P.J., Prince A.S. CD4+ T cells promote the pathogenesis of Staphylococcus aureus pneumonia. J. Infect. Dis. 2015;211:835–845. doi: 10.1093/infdis/jiu525.
    1. Yoong P., Torres V.J. Counter inhibition between leukotoxins attenuates Staphylococcus aureus virulence. Nat. Commun. 2015;6:8125. doi: 10.1038/ncomms9125.
    1. Miller L.G., Eells S.J., Taylor A.R., David M.Z., Ortiz N, Zychowski D, Kumar N., Cruz D., Boyle-Vavra S., Daum R.S. Staphylocccus aureus colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin. Infect. Dis. 2012;54:1523–1535. doi: 10.1093/cid/cis213.
    1. Albrecht V.S., Limbago B.M., Moran G.J., Krishnadasan A., Gorwitz R.J., McDougal L.K., Talan D.A. Staphylococcus aureus Colonization and Strain Type at Various Body Sites among Patients with a Closed Abscess and Uninfected Controls at U.S. Emergency Departments. J. Clin. Microbiol. 2015;53:3478–3484. doi: 10.1128/JCM.01371-15.
    1. Krausz K.L., Bose J.L. Rapid Isolation of DNA from Staphylococcus. Methods Mol. Biol. 2016;1373:59–62. doi: 10.1007/7651_2014_184.
    1. Ma X.X., Galiana A., Pedreira W., Mowszowicz M., Christophersen I., Machiavello S., Lope L., Benaderet S., Buela F., Vicentino W., et al. Community-acquired methicillin-resistant Staphylococcus aureus, Uruguay. Emerg. Infect. Dis. 2005;11:973–976. doi: 10.3201/eid1106.041059.
    1. Diep B.A., Gill S.R., Chang R.F., Phan T.H., Chen J.H., Davidson M.G., Lin F., Lin J., Carleton H.A., Mongodin E.F., et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–739. doi: 10.1016/S0140-6736(06)68231-7.

Source: PubMed

3
S'abonner