Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era

Jamie McDonald, Whitney Wooderchak-Donahue, Chad VanSant Webb, Kevin Whitehead, David A Stevenson, Pinar Bayrak-Toydemir, Jamie McDonald, Whitney Wooderchak-Donahue, Chad VanSant Webb, Kevin Whitehead, David A Stevenson, Pinar Bayrak-Toydemir

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia characterized by telangiectases and arteriovenous malformations (AVMs) in particular locations described in consensus clinical diagnostic criteria published in 2000. Two genes in the transforming growth factor-beta (TGF-β) signaling pathway, ENG and ACVRL1, were discovered almost two decades ago, and mutations in these genes have been reported to cause up to 85% of HHT. In our experience, approximately 96% of individuals with HHT have a mutation in these two genes, when published (Curaçao) diagnostic criteria for HHT are strictly applied. More recently, two additional genes in the same pathway, SMAD4 and GDF2, have been identified in a much smaller number of patients with a similar or overlapping phenotype to HHT. Yet families still exist with compelling evidence of a hereditary telangiectasia disorder, but no identifiable mutation in a known gene. Recent availability of whole exome and genome testing has created new opportunities to facilitate gene discovery, identify genetic modifiers to explain clinical variability, and potentially define an increased spectrum of hereditary telangiectasia disorders. An expanded approach to molecular diagnostics for inherited telangiectasia disorders that incorporates a multi-gene next generation sequencing (NGS) HHT panel is proposed.

Keywords: HHT; Rendu-Osler-Weber; arteriovenous malformation; genetics; molecular diagnostics; telangiectasia.

Figures

FIGURE 1
FIGURE 1
Hereditary hemorrhagic telangiectasia is a genetically heterogeneous disorder caused by mutations in several genes in the TGF-β/BMP signaling pathway. BMP9 binds to specific type I (R-I; namely ALK1) and type II (R-II) cell surface receptors that exhibit serine/threonine kinase activity, as well as to the auxiliary receptor endoglin. Upon ligand binding, the R-II transphosphorylates ALK1 (R-I), which then propagates the signal by phosphorylating receptor-regulated Smads (R-Smads) Smad1/5/8. Once phosphorylated, R-Smads form heteromeric complexes with Smad4 and translocate into the nucleus where they regulate transcriptional activity of target genes, including Id1. Endoglin, ALK1, BMP9, and Smad4 proteins are encoded by ENG, ACVRL1, GDF2, and SMAD4, whose pathogenic mutations give rise to HHT and JP/HHT, respectively. This figure was adapted from (Fernández-L et al., 2006).
FIGURE 2
FIGURE 2
Proposed molecular testing algorithm for HHT based on the suspected clinical diagnosis. The testing algorithm for classic HHT is shown on the left. An algorithm for patients suspected to have HHT or an HHT-like phenotype (right) depicts the use of a five gene HHT next generation sequencing panel and aCGH. The dashed line indicates a streamlined future diagnostic algorithm for HHT patients as NGS costs and turn-around times are reduced.

References

    1. Abdalla S. A., Letarte M. (2006). Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J. Med. Genet. 43 97–110 10.1136/jmg.2005.030833
    1. Akers A. L., Johnson E., Steinberg G. K., Zabramski J. M., Marchuk D. A. (2009). Biallelicsomaticand germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum. Mol. Genet. 18 919–930 10.1093/hmg/ddn430
    1. Al-Saleh S., Mei-Zahav M., Faughnan M. E., MacLusky I. B., Carpenter S., Letarte M., et al. (2009). Screening for pulmonary and cerebral arteriovenous malformations in children with hereditary haemorrhagic telangiectasia. Eur. Respir. J. 34 875–881 10.1183/09031936.00030009
    1. Amyere M., Aerts V., Brouillard P., McIntyre B. A., Duhoux F. P., Wassef M., et al. (2013). Somaticuniparental isodisomy explains multifocality of glomuvenous malformations. Am. J. Hum. Genet. 92 188–196 10.1016/j.ajhg.2012.12.017
    1. ARUP Laboratories. (2014a). Acvrl1 Mutation Database. Available at: [accessed October 31 2014].
    1. ARUP Laboratories. (2014b). Eng Mutation Database. Available at: [accessed October 31 2014].
    1. Assar A. (1991). The natural history of epistaxis in hereditary hemorrhagic telangiectasia. Am. J. Gastroenterol. 101 977–980 10.1288/00005537-199109000-00008
    1. Bayrak-Toydemir P., Mao R., Lewin S., McDonald J. (2004). Hereditary hemorrhagic telangiectasia: an overview of diagnostic and management in the molecular era for clinicians. Genet. Med. 6 175–191 10.1097/01.GIM.0000132689.25644.7C
    1. Bayrak-Toydemir P., McDonald J., Markewitz B., Lewin S., Miller F., Chou L. S., et al. (2006a). Genotype-phenotype correlation in hereditary hemorrhagic telangiectasia: mutations and manifestations. Am. J. Med. Genet. A 140 463–470 10.1002/ajmg.a.31101
    1. Bayrak-Toydemir P., McDonald J., Akarsu N., Toydemir R. M., Calderon F., Tuncali T., et al. (2006b). A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am. J. Med. Genet. A 140 2155–2162 10.1002/ajmg.a.31450
    1. Bayrak-Toydemir P., McDonald J., Mao R., Phansalkar A., Gedge F., Robles J., et al. (2008). Likelihood ratios to assess genetic evidence for clinical significance of uncertain variants: hereditary hemorrhagic telangiectasia as a model. Exp. Mol. Pathol. 85 45–49 10.1016/j.yexmp.2008.03.006
    1. Benzinou M., Clermont F. F., Letteboer T. B., Kim J. H., Espejel S., Harradine K. A., et al. (2012). Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat. Commun. 3 616 10.1038/ncomms1633
    1. Berg J. N., Gallione C. J., Stenzel T. T., Johnson D. W., Allen W. P., Schwartz C. E., et al. (1997). The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am. J. Hum. Genet. 61 60–67 10.1086/513903
    1. Best D. H., Vaughn C., McDonald J., Damjanovich K., Runo J. R., Chibuk J. M., et al. (2011). Mosaic ACVRL1 and ENG mutations in hereditary haemorrhagic telangiectasia patients. J. Med. Genet. 48 358–360 10.1136/jmg.2010.088286
    1. Cole S. G., Begbie M. E., Wallace G. M., Shovlin C. L. (2005). A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J. Med. Genet. 42 577–582 10.1136/jmg.2004.028712
    1. Damjanovich K., Langa C., Blanco F. J., McDonald J., Botella L. M., Bernabeu C., et al. (2011). 5′UTR mutations of ENG cause hereditary hemorrhagic telangiectasia. Orphanet J. Rare Dis. 6 85 10.1186/1750-1172-6-85
    1. Faughnan M. E., Palda V. A., Garcia-Tsao G., Geisthoff U. W., McDonald J., Proctor D. D., et al. (2011). HHT Foundation International – Guidelines Working Group. international guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J. Med. Genet. 48 73–87 10.1136/jmg.2009.069013
    1. Fernández-L A., Sanz-Rodriguez F., Blanco F. J., Bernabéu C., Botella L. M. (2006). Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin. Med. Res. 4 66–78 10.3121/cmr.4.1.66
    1. Gallione C. J., Aylsworth A. S., Beis J., Berk T., Bernhardt B., Clark R. D., et al. (2010). Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am. J. Med. Gen. A. 152 333–339 10.1002/ajmg.a.33206
    1. Gallione C. J., Klaus D. J., Yeh E. Y., Stenzel T. T., Xue Y., Anthony K. B., et al. (1998). Mutation and expression analysis of the endoglin gene in hereditary hemorrhagic telangiectasia reveals null alleles. Hum. Mutat. 11 286–294 10.1002/(SICI)1098-1004(1998)11:4<286::AID-HUMU6>;2-B
    1. Gallione C. J., Repetto G. M., Legius E., Rustgi A. K., Schelley S. L., Tejpar S., et al. (2004). A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363 852–859 10.1016/S0140-6736(04)15732-2
    1. Gallione C. J., Richards J. A., Letteboer T. G., Rushlow D., Prigoda N. L., Leedom T. P., et al. (2006). SMAD4 mutations found in unselected HHT patients. J. Med. Genet. 43 793–797 10.1136/jmg.2006.041517
    1. Gedge F., McDonald J., Phansalkar A., Chou L. S., Calderon F., Mao R., et al. (2007). Clinical and analytic sensitivities in hereditary hemorrhagic telangiectasa testing and a report of de novomutations. J. Mol. Diagn. 9 258–265 10.2353/jmoldx.2007.060117
    1. Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., et al. (1996). Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13 189–195 10.1038/ng0696-189
    1. Kawasaki K., Freimuth J., Meyer D. S., Lee M. M., Tochimoto-Okamoto A., Benzinou M., et al. (2014). Genetic variants ofAdam17differentially regulate TGFβ signaling to modify vascular pathology in mice and humans. Proc. Natl. Acad. Sci. U.S.A. 111 7723–7728 10.1073/pnas.1318761111
    1. Lesca G., Burnichon N., Raux G., Tosi M., Pinson S., Marion M. J., et al. (2006). Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients. Hum. Mutat. 27 598 10.1002/humu.9421
    1. Lesca G., Plauchu H., Coulet F., Lefebvre S., Plessis G., Odent S., et al. (2004). Molecular screening of ALK1/ACVRL1 and ENG genes in hereditary hemorrhagic telangiectasia in France. Hum. Mutat. 23 289–299 10.1002/humu.20017
    1. Limaye N., Wouters V., Uebelhoer M., Tuominen M., Wirkkala R., Mulliken J. B., et al. (2009). Somaticmutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41 188–124 10.1038/ng.272
    1. Marchuk D. A., Guttmacher A. E., Penner J. A., Ganguly P. (1998). Report on the workshop on hereditary hemorrhagic telangiectasia July 10-11, 1997. Am. J. Med. Genet. 76 269–273 10.1002/(SICI)1096-8628(19980319)76:3<269::AID-AJMG12>;2-F
    1. McAllister K. A., Grogg K. M., Johnson D. W., Gallione C. J., Baldwin M. A., Jackson C. E., et al. (1994). Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8 345–351 10.1038/ng1294-345
    1. McDonald J., Damjanovich K., Millson A., Wooderchak W., Chibuk J. M., Stevenson D. A., et al. (2011a). Molecular diagnosis in hereditary hemorrhagic telangiectasia: findings in a series of tested simultaneously by sequencing and deletion/duplication analysis. Clin. Genet. 79 335–344 10.1111/j.1399-0004.2010.01596.x
    1. McDonald J., Bayrak-Toydemir P., Pyeritz R. E. (2011b). Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management and pathogenesis. Genet. Med. 13 607–16 10.1097/GIM.0b013e3182136d32
    1. McDonald J., Gedge F., Burdette A., Carlisle J., Bukjiok C. J., Fox M., et al. (2009). Multiple sequence variants in hereditary hemorrhagic telangiectasia cases: illustration of complexity in molecular diagnostic interpretation. J. Mol. Diag. 11 569–575 10.2353/jmoldx.2009.080148
    1. Mei-Zahav M., Letarte M., Faughnan M. E., Abdalla S. A., Cymerman U., MacLusky I. B. (2006). Symptomatic children with hereditary hemorrhagic telangiectasia. Arch. Pediatr. Adolesc. Med. 16 596–601 10.1001/archpedi.160.6.596
    1. Morgan T., McDonald J., Anderson C., Ismail M., Miller F., Mao R., et al. (2002). Intracranial hemorrhage in infants and children with hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome). Pediatrics 109 E12. 10.1542/peds.109.1.e12
    1. Pece N., Vera S., Cymerman U., White R. I., Jr., Wrana J. L., Letarte M. (1997). Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative. J. Clin. Invest. 100 2568–2579 10.1172/JCI119800
    1. Plauchu H., de Chadarévian J. P., Bideau A., Robert J. M. (1989). Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am. J. Med. Genet. 32 291–297 10.1002/ajmg.1320320302
    1. Porteous M. E., Burn J., Proctor S. J. (1992). Hereditary haemorrhagic telangiectasia: a clinical analysis. J. Med. Genet. 29 527–530 10.1136/jmg.29.8.527
    1. Prigoda N. L., Savas S., Abdalla S. A., Piovesan B., Rushlow D., Vandezande K., et al. (2006). Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations. J. Med. Genet. 43 722–728 10.1136/jmg.2006.042606
    1. Revencu N., Boon L. M., Mendola A., Cordisco M. R., Dubois J., Clapuyt P., et al. (2013). RASA1 mutations and associated phenotypes in 68 Families with capillary malformation–arteriovenous malformation. Hum. Mutat. 34 1632–1641 10.1002/humu.22431
    1. Richards-Yutz J., Grant K., Chao E. C., Walther S. E., Ganguly A. (2010). Update on molecular diagnosis of hereditary hemorrhagic telangiectasia. Hum. Genet. 128 61–77 10.1007/s00439-010-0825-4
    1. Rigelsky C. M., Jennings C., Lehtonen R., Minai O. A., Eng C., Aldred M. A. (2008). BMPR2 mutation in a patient with pulmonary arterial hypertension and suspected hereditary hemorrhagic telangiectasia. Am. J. Med. Genet. A. 146A, 2551–2556 10.1002/ajmg.a.32468
    1. Shovlin C. L., Guttmacher A. E., Buscarini E., Faughnan M. E., Hyland R. H., Westermann C. J., et al. (2000). Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am. J. Med. Genet. 91 66–67 10.1002/(SICI)1096-8628(20000306)91:1<66::AID-AJMG12>;2-P
    1. Shovlin C. L., Hughes J. M., Tuddenham E. G., Temperley I., Perembelon Y. F., Scott J., et al. (1994). A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat. Genet. 6 205–209 10.1038/ng0294-205
    1. Soubrier F., Chung W. K., Machado R., Grünig E., Aldred M., Geraci M., et al. (2013). Genetics and genomics of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 63(Suppl. 25), D13–D21 10.1016/j.jacc.2013.10.035
    1. Trembath R. C., Thomson J. R., Machado R. D., Morgan N. V., Atkinson C., Winship I., et al. (2001). Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345 325–334 10.1056/NEJM200108023450503
    1. Wain K. E., Ellingson M. S., McDonald J., Gammon A., Roberts M., Pichurin P., et al. (2014). Appreciating the broad clinical features of SMAD4 mutation carriers: a multicenter chart review. Genet. Med. 16 588–593 10.1038/gim.2014.5
    1. Wooderchak W., Gedge F., McDonald M., Krautscheid P., Wang X., Malkiewicz J., et al. (2010a). Hereditary hemorrhagic telangiectasia: two distinct ENG deletions in one family. Clin. Genet. 78 484–489 10.1111/j.1399-0004.2010.01418.x
    1. Wooderchak W., Spencer Z., Crockett D. K., McDonald J., Bayrak-Toydemir P. (2010b). Repository of SMAD4 mutations: eference for genotype/phenotype correlation. J. Data Mining Genom. Proteomics 1 101.
    1. Wooderchak-Donahue W., McDonald J., O’Fallon B., Upton P. D., Li W., Roman B. L., et al. (2013). BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Gen. 93 1–8 10.1016/j.ajhg.2013.07.004

Source: PubMed

3
S'abonner