Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study

Antonio M Almeida, Thomas Prebet, Raphael Itzykson, Fernando Ramos, Haifa Al-Ali, Jamile Shammo, Ricardo Pinto, Luca Maurillo, Jaime Wetzel, Pellegrino Musto, Arjan A Van De Loosdrecht, Maria Joao Costa, Susana Esteves, Sonja Burgstaller, Reinhard Stauder, Eva M Autzinger, Alois Lang, Peter Krippl, Dietmar Geissler, Jose Francisco Falantes, Carmen Pedro, Joan Bargay, Guillermo Deben, Ana Garrido, Santiago Bonanad, Maria Diez-Campelo, Sylvain Thepot, Lionel Ades, Wolfgang R Sperr, Peter Valent, Pierre Fenaux, Mikkael A Sekeres, Richard Greil, Lisa Pleyer, Antonio M Almeida, Thomas Prebet, Raphael Itzykson, Fernando Ramos, Haifa Al-Ali, Jamile Shammo, Ricardo Pinto, Luca Maurillo, Jaime Wetzel, Pellegrino Musto, Arjan A Van De Loosdrecht, Maria Joao Costa, Susana Esteves, Sonja Burgstaller, Reinhard Stauder, Eva M Autzinger, Alois Lang, Peter Krippl, Dietmar Geissler, Jose Francisco Falantes, Carmen Pedro, Joan Bargay, Guillermo Deben, Ana Garrido, Santiago Bonanad, Maria Diez-Campelo, Sylvain Thepot, Lionel Ades, Wolfgang R Sperr, Peter Valent, Pierre Fenaux, Mikkael A Sekeres, Richard Greil, Lisa Pleyer

Abstract

Acute erythroleukemia (AEL) is a rare disease typically associated with a poor prognosis. The median survival ranges between 3-9 months from initial diagnosis. Hypomethylating agents (HMAs) have been shown to prolong survival in patients with myelodysplastic syndromes (MDS) and AML, but there is limited data of their efficacy in AEL. We collected data from 210 AEL patients treated at 28 international sites. Overall survival (OS) and PFS were estimated using the Kaplan-Meier method and the log-rank test was used for subgroup comparisons. Survival between treatment groups was compared using the Cox proportional hazards regression model. Eighty-eight patients were treated with HMAs, 44 front line, and 122 with intensive chemotherapy (ICT). ICT led to a higher overall response rate (complete or partial) compared to first-line HMA (72% vs. 46.2%, respectively; p ≤ 0.001), but similar progression-free survival (8.0 vs. 9.4 months; p = 0.342). Overall survival was similar for ICT vs. HMAs (10.5 vs. 13.7 months; p = 0.564), but patients with high-risk cytogenetics treated with HMA first-line lived longer (7.5 for ICT vs. 13.3 months; p = 0.039). Our results support the therapeutic value of HMA in AEL.

Keywords: acute erythroleukemia; azacitidine; decitabine.

Conflict of interest statement

Antonio M. Almeida: speaker and advisory board for Celgene; Arjan A. Van De Loosdrecht: speaker and advisory board Celgene, advisory board Novartis; Jamile Shammo: Received research funding and honoraria for speaking engagements and consultancy from Celgene; Peter Valent received a research grant and speaker´s honoraria from Celgene and served as an advisory board member for Celgene. Fernando Ramos: Honoraria/Consultation fees for Celgene, Janssen, Amgen, Novatis, Pfizer, Glaxo-Smith-Kline, Merck-Sharp & Dohme. Maria Diez Campelo: speaker, research founding and advisory boards for Celgene.

Figures

Figure 1
Figure 1
(A) Overall survival of HMA-treated patients stratified by cytogenetic risk group (total HMA cohort): the median OS for patients treated with HMA was superior for patients with intermediate-compared to high-risk cytogenetics (13.5 months vs. 12.3 months; p = 0.0376); and (B) the overall survival by response to HMA: the median survival in patients with CR was 18.2 months, 12.7 months in patients with PR or HI, and 4.5 months in patients with no response (SD or primary PD; p < 0.001).
Figure 1
Figure 1
(A) Overall survival of HMA-treated patients stratified by cytogenetic risk group (total HMA cohort): the median OS for patients treated with HMA was superior for patients with intermediate-compared to high-risk cytogenetics (13.5 months vs. 12.3 months; p = 0.0376); and (B) the overall survival by response to HMA: the median survival in patients with CR was 18.2 months, 12.7 months in patients with PR or HI, and 4.5 months in patients with no response (SD or primary PD; p < 0.001).
Figure 2
Figure 2
Overall survival of AEL patients stratified by type of first line treatment. (A) Total cohorts: median OS for patients treated with first-line HMA was similar to that of those treated with first-line ICT (13.7 months vs. 10.5 months; p = 0.564); (B) stratified by MRC intermediate cytogenetic risk: AEL-patients with intermediate-risk cytogenetics treated with first-line HMA did not have a significantly different median survival as compared to AEL-patients treated with first-line ICT (16.9 months vs. 29.3 months; p = 0.277); and (C) stratified by MRC high cytogenetic risk: AEL-patients with high-risk cytogenetics treated with first-line HMA had a significantly longer median survival as compared to AEL-patients treated with first-line ICT (13.3 months vs. 7.5 months; p = 0.0391).
Figure 2
Figure 2
Overall survival of AEL patients stratified by type of first line treatment. (A) Total cohorts: median OS for patients treated with first-line HMA was similar to that of those treated with first-line ICT (13.7 months vs. 10.5 months; p = 0.564); (B) stratified by MRC intermediate cytogenetic risk: AEL-patients with intermediate-risk cytogenetics treated with first-line HMA did not have a significantly different median survival as compared to AEL-patients treated with first-line ICT (16.9 months vs. 29.3 months; p = 0.277); and (C) stratified by MRC high cytogenetic risk: AEL-patients with high-risk cytogenetics treated with first-line HMA had a significantly longer median survival as compared to AEL-patients treated with first-line ICT (13.3 months vs. 7.5 months; p = 0.0391).

References

    1. Santos F.P., Bueso-Ramos C.E., Ravandi F. Acute erythroleukemia: Diagnosis and management. Expert Rev. Hematol. 2010;3:705–718. doi: 10.1586/ehm.10.62.
    1. Liu W., Hasserjian R.P., Hu Y., Zhang L., Miranda R.N., Medeiros L.J., Wang S.A. Pure erythroid leukemia: A reassessment of the entity using the 2008 World Health Organization classification. Mod. Pathol. 2011;24:375–383. doi: 10.1038/modpathol.2010.194.
    1. Zuo Z., Polski J.M., Kasyan A., Medeiros L.J. Acute erythroid leukemia. Arch. Pathol. Lab. Med. 2010;134:1261–1270.
    1. Kasyan A., Medeiros L.J., Zuo Z., Santos F.P., Ravandi-Kashani F., Miranda R., Vadhan-Raj S., Koeppen H., Bueso-Ramos C.E. Acute erythroid leukemia as defined in the World Health Organization classification is a rare and pathogenetically heterogeneous disease. Mod. Pathol. 2010;23:1113–1126. doi: 10.1038/modpathol.2010.96.
    1. Selby D.M., Valdez R., Schnitzer B., Ross C.W., Finn W.G. Diagnostic criteria for acute erythroleukemia. Blood. 2003;101:2895–2896. doi: 10.1182/blood-2002-11-3459.
    1. Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544.
    1. Arenillas L., Calvo X., Luno E., Senent L., Alonso E., Ramos F., Ardanaz M.T., Pedro C., Tormo M., Marco V., et al. Considering Bone Marrow Blasts From Nonerythroid Cellularity Improves the Prognostic Evaluation of Myelodysplastic Syndromes. J. Clin. Oncol. 2016;34:3284–3292. doi: 10.1200/JCO.2016.66.9705.
    1. Calvo X., Arenillas L., Luno E., Senent L., Arnan M., Ramos F., Ardanaz M.T., Pedro C., Tormo M., Montoro J., et al. Erythroleukemia shares biological features and outcome with myelodysplastic syndromes with excess blasts: A rationale for its inclusion into future classifications of myelodysplastic syndromes. Mod. Pathol. 2016;29:1541–1551. doi: 10.1038/modpathol.2016.146.
    1. Jogai S., Varma N., Garewal G., Das R., Varma S. Acute erythroleukemia (AML-M6)—A study of clinicohematological, morphological and dysplastic features in 10 cases. Indian J. Cancer. 2001;38:143–148.
    1. Olopade O.I., Thangavelu M., Larson R.A., Mick R., Kowal-Vern A., Schumacher H.R., Le Beau M.M., Vardiman J.W., Rowley J.D. Clinical, morphologic, and cytogenetic characteristics of 26 patients with acute erythroblastic leukemia. Blood. 1992;80:2873–2882.
    1. Domingo-Claros A., Larriba I., Rozman M., Irriguible D., Vallespi T., Aventin A., Ayats R., Milla F., Sole F., Florensa L., et al. Acute erythroid neoplastic proliferations. A biological study based on 62 patients. Haematologica. 2002;87:148–153.
    1. Lessard M., Struski S., Leymarie V., Flandrin G., Lafage-Pochitaloff M., Mozziconacci M.J., Talmant P., Bastard C., Charrin C., Baranger L., et al. Cytogenetic study of 75 erythroleukemias. Cancer Genet. Cytogenet. 2005;163:113–122. doi: 10.1016/j.cancergencyto.2005.05.006.
    1. Mazzella F.M., Kowal-Vern A., Shrit M.A., Rector J.T., Cotelingam J.D., Schumacher H.R. Effects of multidrug resistance gene expression in acute erythroleukemia. Mod. Pathol. 2000;13:407–413. doi: 10.1038/modpathol.3880070.
    1. Grossmann V., Bacher U., Haferlach C., Schnittger S., Potzinger F., Weissmann S., Roller A., Eder C., Fasan A., Zenger M., et al. Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. Leukemia. 2013;27:1940–1943. doi: 10.1038/leu.2013.144.
    1. Atkinson J., Hrisinko M.A., Weil S.C. Erythroleukemia: A review of 15 cases meeting 1985 FAB criteria and survey of the literature. Blood Rev. 1992;6:204–214. doi: 10.1016/0268-960X(92)90016-J.
    1. Micci F., Thorsen J., Panagopoulos I., Nyquist K.B., Zeller B., Tierens A., Heim S. High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24) Leukemia. 2013;27:980–982. doi: 10.1038/leu.2012.266.
    1. Srinivas U., Kumar R., Pati H.P., Saxena R., Tyagi S. Sub classification and clinico-hematological correlation of 40 cases of acute erythroleukemia—Can proerythroblast/myeloblast and proerythroblast/total erythroid cell ratios help subclassify? Hematology. 2007;12:381–385. doi: 10.1080/10245330701393816.
    1. Mazzella F.M., Kowal-Vern A., Shrit M.A., Wibowo A.L., Rector J.T., Cotelingam J.D., Collier J., Mikhael A., Cualing H., Schumacher H.R. Acute erythroleukemia: Evaluation of 48 cases with reference to classification, cell proliferation, cytogenetics, and prognosis. Am. J. Clin. Pathol. 1998;110:590–598. doi: 10.1093/ajcp/110.5.590.
    1. Kowal-Vern A., Mazzella F.M., Cotelingam J.D., Shrit M.A., Rector J.T., Schumacher H.R. Diagnosis and characterization of acute erythroleukemia subsets by determining the percentages of myeloblasts and proerythroblasts in 69 cases. Am. J. Hematol. 2000;65:5–13. doi: 10.1002/1096-8652(200009)65:1<5::AID-AJH2>;2-U.
    1. Santos F.P., Faderl S., Garcia-Manero G., Koller C., Beran M., O‘Brien S., Pierce S., Freireich E.J., Huang X., Borthakur G., et al. Adult acute erythroleukemia: An analysis of 91 patients treated at a single institution. Leukemia. 2009;23:2275–2280. doi: 10.1038/leu.2009.181.
    1. Pierdomenico F., Almeida A. Treatment of acute erythroleukemia with Azacitidine: A case series. Leuk. Res. Rep. 2013;2:41–43. doi: 10.1016/j.lrr.2013.04.001.
    1. Colita A., Belhabri A., Chelghoum Y., Charrin C., Fiere D., Thomas X. Prognostic factors and treatment effects on survival in acute myeloid leukemia of M6 subtype: A retrospective study of 54 cases. Ann. Oncol. 2001;12:451–455. doi: 10.1023/A:1011133115435.
    1. Fenaux P., Mufti G.J., Hellstrom-Lindberg E., Santini V., Finelli C., Giagounidis A., Schoch R., Gattermann N., Sanz G., List A., et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–232. doi: 10.1016/S1470-2045(09)70003-8.
    1. Garcia-Manero G., Jabbour E., Borthakur G., Faderl S., Estrov Z., Yang H., Maddipoti S., Godley L.A., Gabrail N., Berdeja J.G., et al. Randomized open-label phase II study of decitabine in patients with low- or intermediate-risk myelodysplastic syndromes. J. Clin. Oncol. 2013;31:2548–2553. doi: 10.1200/JCO.2012.44.6823.
    1. Pleyer L., Germing U., Sperr W.R., Linkesch W., Burgstaller S., Stauder R., Girschikofsky M., Schreder M., Pfeilstocker M., Lang A., et al. Azacitidine in CMML: Matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leuk. Res. 2014;38:475–483. doi: 10.1016/j.leukres.2014.01.006.
    1. Thorpe M., Montalvao A., Pierdomenico F., Moita F., Almeida A. Treatment of chronic myelomonocytic leukemia with 5-Azacitidine: A case series and literature review. Leuk. Res. 2012;36:1071–1073. doi: 10.1016/j.leukres.2012.04.024.
    1. Fianchi L., Criscuolo M., Breccia M., Maurillo L., Salvi F., Musto P., Mansueto G., Gaidano G., Finelli C., Aloe-Spiriti A., et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: Results of an Italian retrospective study. Leuk. Lymphoma. 2013;54:658–661. doi: 10.3109/10428194.2012.719617.
    1. Fenaux P., Mufti G.J., Hellstrom-Lindberg E., Santini V., Gattermann N., Germing U., Sanz G., List A.F., Gore S., Seymour J.F., et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 2010;28:562–569. doi: 10.1200/JCO.2009.23.8329.
    1. Dombret H., Seymour J.F., Butrym A., Wierzbowska A., Selleslag D., Jang J.H., Kumar R., Cavenagh J., Schuh A.C., Candoni A., et al. International phase 3 study of azacitidine vs. conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126:291–299. doi: 10.1182/blood-2015-01-621664.
    1. Kantarjian H.M., Thomas X.G., Dmoszynska A., Wierzbowska A., Mazur G., Mayer J., Gau J.P., Chou W.C., Buckstein R., Cermak J., et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J. Clin. Oncol. 2012;30:2670–2677. doi: 10.1200/JCO.2011.38.9429.
    1. Thepot S., Itzykson R., Seegers V., Recher C., Raffoux E., Quesnel B., Delaunay J., Cluzeau T., Marfaing Koka A., Stamatoullas A., et al. Azacitidine in untreated acute myeloid leukemia: A report on 149 patients. Am. J. Hematol. 2014;89:410–416. doi: 10.1002/ajh.23654.
    1. Pleyer L., Burgstaller S., Girschikofsky M., Linkesch W., Stauder R., Pfeilstocker M., Schreder M., Tinchon C., Sliwa T., Lang A., et al. Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: Results from the Austrian Azacitidine Registry of the AGMT-Study Group. Ann. Hematol. 2014;93:1825–1838. doi: 10.1007/s00277-014-2126-9.
    1. Falantes J., Thepot S., Pleyer L., Maurillo L., Martínez-Robles V., Itzykson R., Bargay J., Stauder R., Venditti A., Martínez M.P., Seegers V., et al. Azacitidine in older patients with acute myeloid leukemia (AML). Results from the expanded international E-ALMA series (E-ALMA+) according to the MRC risk index score. Blood. 2015;126:2554.
    1. Pleyer L., Stauder R., Burgstaller S., Schreder M., Tinchon C., Pfeilstocker M., Steinkirchner S., Melchardt T., Mitrovic M., Girschikofsky M., et al. Azacitidine in patients with WHO-defined AML—Results of 155 patients from the Austrian Azacitidine Registry of the AGMT-Study Group. J. Hematol. Oncol. 2013;6:32. doi: 10.1186/1756-8722-6-32.
    1. Maurillo L., Venditti A., Spagnoli A., Gaidano G., Ferrero D., Oliva E., Lunghi M., D’Arco A.M., Levis A., Pastore D., et al. Azacitidine for the treatment of patients with acute myeloid leukemia: Report of 82 patients enrolled in an Italian Compassionate Program. Cancer. 2012;118:1014–1022. doi: 10.1002/cncr.26354.
    1. Pleyer L., Burgstaller S., Stauder R., Girschikofsky M., Sill H., Schlick K., Thaler J., Halter B., Machherndl-Spandl S., Zebisch A., et al. Azacitidine front-line in 339 patients with myelodysplastic syndromes and acute myeloid leukaemia: Comparison of French-American-British and World Health Organization classifications. J. Hematol. Oncol. 2016;9:39. doi: 10.1186/s13045-016-0263-4.
    1. Kadia T.M., Thomas X.G., Dmoszynska A., Wierzbowska A., Minden M., Arthur C., Delaunay J., Ravandi F., Kantarjian H. Decitabine improves outcomes in older patients with acute myeloid leukemia and higher blast counts. Am. J. Hematol. 2015;90:E139–E141. doi: 10.1002/ajh.24036.
    1. Mayer J., Arthur C., Delaunay J., Mazur G., Thomas X.G., Wierzbowska A., Ravandi F., Berrak E., Jones M., Li Y., et al. Multivariate and subgroup analyses of a randomized, multinational, phase 3 trial of decitabine vs. treatment choice of supportive care or cytarabine in older patients with newly diagnosed acute myeloid leukemia and poor- or intermediate-risk cytogenetics. BMC Cancer. 2014;14:69. doi: 10.1186/1471-2407-14-69.
    1. Gupta N., Miller A., Gandhi S., Ford L.A., Vigil C.E., Griffiths E.A., Thompson J.E., Wetzler M., Wang E.S. Comparison of epigenetic versus standard induction chemotherapy for newly diagnosed acute myeloid leukemia patients ≥60 years old. Am. J. Hematol. 2015;90:639–646. doi: 10.1002/ajh.24016.
    1. Lao Z., Yiu R., Wong G.C., Ho A. Treatment of elderly patients with acute myeloid leukemia with azacitidine results in fewer hospitalization days and infective complications but similar survival compared with intensive chemotherapy. Asia Pac. J. Clin. Oncol. 2015;11:54–61. doi: 10.1111/ajco.12331.
    1. Van der Helm L.H., Scheepers E.R., Veeger N.J., Daenen S.M., Mulder A.B., van den Berg E., Vellenga E., Huls G. Azacitidine might be beneficial in a subgroup of older AML patients compared to intensive chemotherapy: A single centre retrospective study of 227 consecutive patients. J. Hematol. Oncol. 2013;6:29. doi: 10.1186/1756-8722-6-29.
    1. Jabbour E., Mathisen M.S., Garcia-Manero G., Champlin R., Popat U., Khouri I., Giralt S., Kadia T., Chen J., Pierce S., et al. Allogeneic hematopoietic stem cell transplantation versus hypomethylating agents in patients with myelodysplastic syndrome: A retrospective case-control study. Am. J. Hematol. 2013;88:198–200. doi: 10.1002/ajh.23371.
    1. Ravandi F., Issa J.P., Garcia-Manero G., O’Brien S., Pierce S., Shan J., Borthakur G., Verstovsek S., Faderl S., Cortes J., et al. Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities. Cancer. 2009;115:5746–5751. doi: 10.1002/cncr.24661.
    1. Almeida A., Ferreira A.R., Costa M.J., Silva S., Alnajjar K., Bogalho I., Pierdomenico F., Esteves S., Alpoim M., Braz G., et al. Clinical outcomes of AML patients treated with Azacitidine in Portugal: A retrospective multicenter study. Leuk. Res. Rep. 2017;7:6–10. doi: 10.1016/j.lrr.2016.12.002.
    1. Hansen S.B., Dufva I.H., Kjeldsen L. Durable complete remission after azacitidine treatment in a patient with erythroleukaemia. Eur. J. Haematol. 2012;89:369–370. doi: 10.1111/j.1600-0609.2012.01816.x.
    1. Hangai S., Nakamura F., Kamikubo Y., Honda A., Arai S., Nakagawa M., Ichikawa M., Kurokawa M. Erythroleukemia showing early erythroid and cytogenetic responses to azacitidine therapy. Ann. Hematol. 2013;92:707–709. doi: 10.1007/s00277-012-1603-2.
    1. Vigil C.E., Cortes J., Kantarjian H., Garcia-Manero G., Lancet J., List A. Hypomethylating Therapy for the Treatment of Acute Erythroleukemia Patients. Blood. 2009;114:2069.
    1. King R.J., Crouch A., Radojcic V., Marini B.L., Perissinotti A.J., Bixby D. Therapeutic Outcomes of Patients with Acute Erythroid Leukemia Treated with Hypomethylating Agents. Blood. 2016;128:5203.
    1. Uchida T., Hagihara M., Hua J., Inoue M. The effects of azacitidine on the response and prognosis of myelodysplastic syndrome and acute myeloid leukemia involving a bone marrow erythroblast frequency of >50. Leuk. Res. 2016;53:35–38. doi: 10.1016/j.leukres.2016.11.012.
    1. Steger G.G., Dittrich C., Chott A., Derfler K., Schwarzmeier J.D. Long-term remission in a patient with erythroleukemia following interferon-α treatment. J. Biol. Response Modif. 1989;8:351–354.
    1. Camera A., Volpicelli M., Villa M.R., Risitano A.M., Rossi M., Rotoli B. Complete remission induced by high dose erythropoietin and granulocyte colony stimulating factor in acute erythroleukemia (AML-M6 with maturation) Haematologica. 2002;87:1225–1227.
    1. Creusot F., Acs G., Christman J.K. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2’-deoxycytidine. J. Biol. Chem. 1982;257:2041–2048.
    1. Gambari R., del Senno L., Barbieri R., Viola L., Tripodi M., Raschella G., Fantoni A. Human leukemia K-562 cells: Induction of erythroid differentiation by 5-azacytidine. Cell Differ. 1984;14:87–97. doi: 10.1016/0045-6039(84)90033-2.
    1. Zucker R.M., Decal D.L., Whittington K.B. 5-Azacytidine increases the synthesis of embryonic hemoglobin (E2) in murine erythroleukemic cells. FEBS Lett. 1983;162:436–441. doi: 10.1016/0014-5793(83)80803-5.
    1. Ando T., Nishimura M., Oka Y. Decitabine (5-Aza-2′-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia. 2000;14:1915–1920. doi: 10.1038/sj.leu.2401914.
    1. Efferth T., Futscher B.W., Osieka R. 5-Azacytidine modulates the response of sensitive and multidrug-resistant K562 leukemic cells to cytostatic drugs. Blood Cells Mol. Dis. 2001;27:637–648. doi: 10.1006/bcmd.2001.0427.
    1. Pleyer L., Greil R. Digging deep into “dirty” drugs—Modulation of the methylation machinery. Drug Metab. Rev. 2015;47:252–279. doi: 10.3109/03602532.2014.995379.
    1. Damaj G., Duhamel A., Robin M., Beguin Y., Michallet M., Mohty M., Vigouroux S., Bories P., Garnier A., El Cheikh J., et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: A study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J. Clin. Oncol. 2012;30:4533–4540. doi: 10.1200/JCO.2012.44.3499.
    1. Figueroa M.E., Skrabanek L., Li Y., Jiemjit A., Fandy T.E., Paietta E., Fernandez H., Tallman M.S., Greally J.M., Carraway H., et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009;114:3448–3458. doi: 10.1182/blood-2009-01-200519.
    1. Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V.I., Paschka P., Roberts N.D., Potter N.E., Heuser M., Thol F., Bolli N., et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016;374:2209–2221. doi: 10.1056/NEJMoa1516192.
    1. Dohner H., Estey E.H., Amadori S., Appelbaum F.R., Buchner T., Burnett A.K., Dombret H., Fenaux P., Grimwade D., Larson R.A., et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–474. doi: 10.1182/blood-2009-07-235358.
    1. Cheson B.D., Greenberg P.L., Bennett J.M., Lowenberg B., Wijermans P.W., Nimer S.D., Pinto A., Beran M., de Witte T.M., Stone R.M., et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108:419–425. doi: 10.1182/blood-2005-10-4149.
    1. R: The R Project for Statistical Computing. [(accessed on 12 April 2017)]; Available online:

Source: PubMed

3
S'abonner