Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases

Md Abdul Alim Al-Bari, Md Abdul Alim Al-Bari

Abstract

Emerging viruses such as HIV, dengue, influenza A, SARS coronavirus, Ebola, and other viruses pose a significant threat to human health. Majority of these viruses are responsible for the outbreaks of pathogenic lethal infections. To date, there are no effective therapeutic strategies available for the prophylaxis and treatment of these infections. Chloroquine analogs have been used for decades as the primary and most successful drugs against malaria. Concomitant with the emergence of chloroquine-resistant Plasmodium strains and a subsequent decrease in the use as antimalarial drugs, other applications of the analogs have been investigated. Since the analogs have interesting biochemical properties, these drugs are found to be effective against a wide variety of viral infections. As antiviral action, the analogs have been shown to inhibit acidification of endosome during the events of replication and infection. Moreover, immunomodulatory effects of analogs have been beneficial to patients with severe inflammatory complications of several viral diseases. Interestingly, one of the successful targeting strategies is the inhibition of HIV replication by the analogs in vitro which are being tested in several clinical trials. This review focuses on the potentialities of chloroquine analogs for the treatment of endosomal low pH dependent emerging viral diseases.

Keywords: Chloroquine analogs; antiviral actions; endosomal pH and viral replication.

Figures

Figure 1
Figure 1
Inhibition of viral infection with the increase pH by chloroquine analogs ((Al‐Bari 2015). Steps: 1. Endosome formation; 2. Fusion; 3. posttranslational modification; 4. uncoating virus and CQ, chloroquine.

References

    1. Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M, et al. (2005). Chloroquine enhances human CD8 + T cell responses against soluble antigens in vivo. J Exp Med 202: 817–828.
    1. Adachi K, Ichinose T, Takizawa N, Watanabe K, Kitazato K, Kobayashi N (2007). Inhibition of betanodavirus infection by inhibitors of endosomal acidification. Arch Virol 152: 2217–2224.
    1. Al‐Bari MA (2015). Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 70: 1608–1621.
    1. Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S (2011). Lysosomotropic agents as HCV entry inhibitors. Virol J 8: 163.
    1. Augustijns P, Geusens P, Verbeke N (1992). Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur J Clin Pharmacol 42: 429–433.
    1. Avina‐Zubieta JA, Galindo‐Rodriguez G, Newman S, Suarez‐Almazor ME, Russell AS (1998). Long‐term effectiveness of antimalarial drugs in rheumatic diseases. Ann Rheum Dis 57: 582–587.
    1. Baize S, Leroy EM, Georges‐Courbot MC, Capron M, Lansoud‐Soukate J, Debre P, et al. (1999). Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus‐infected patients. Nat Med 5: 423–426.
    1. Baize S, Leroy EM, Georges AJ, Georges‐Courbot MC, Capron M, Bedjabaga I, et al. (2002). Inflammatory responses in Ebola virus‐infected patients. Clin Exp Immunol 128: 163–168.
    1. Barrow E, Nicola AV, Liu J (2013). Multiscale perspectives of virus entry via endocytosis. Virol J 10: 177.
    1. Bekerman E, Einav S (2015). Infectious disease. Combating emerging viral threats. Science 348: 282–283.
    1. Bhattacharyya S, Warfield KL, Ruthel G, Bavari S, Aman MJ, Hope TJ (2010). Ebola virus uses clathrin‐mediated endocytosis as an entry pathway. Virology 401: 18–28.
    1. Bishop BM (2014). Potential and emerging treatment options for Ebola virus disease. Ann Pharmacother 49: 196–206.
    1. Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al. (2006). Hepatitis C virus entry depends on clathrin‐mediated endocytosis. J Virol 80: 6964–6972.
    1. Boelaert JR, Sperber K, Piette J (2001a). The additive in vitro anti‐HIV‐1 effect of chloroquine, when combined with zidovudine and hydroxyurea. Biochem Pharmacol 61: 1531–1535.
    1. Boelaert JR, Yaro S, Augustijns P, Meda N, Schneider YJ, Schols D, et al. (2001b). Chloroquine accumulates in breast‐milk cells: potential impact in the prophylaxis of postnatal mother‐to‐child transmission of HIV‐1. AIDS 15: 2205–2207.
    1. Boonyasuppayakorn S, Reichert ED, Manzano M, Nagarajan K, Padmanabhan R (2014). Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antiviral Res 106: 125–134.
    1. Borba EF, Saad CG, Pasoto SG, Calich AL, Aikawa NE, Ribeiro AC, et al. (2012). Influenza A/H1N1 vaccination of patients with SLE: can antimalarial drugs restore diminished response under immunosuppressive therapy? Rheumatology (Oxford) 51: 1061–1069.
    1. Borges MC, Castro LA, Fonseca BA (2013). Chloroquine use improves dengue‐related symptoms. Mem Inst Oswaldo Cruz 108: 596–599.
    1. Brighton SW (1984). Chloroquine phosphate treatment of chronic Chikungunya arthritis. An open pilot study. S Afr Med J 66: 217–218.
    1. Brouwers J, Vermeire K, Schols D, Augustijns P (2008). Development and in vitro evaluation of chloroquine gels as microbicides against HIV‐1 infection. Virology 378: 306–310.
    1. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM (2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308: 1643–1645.
    1. Chauhan A, Tikoo A (2015). The enigma of the clandestine association between chloroquine and HIV‐1 infection. HIV Med 16: 585–590.
    1. Chauhan A, Mehla R, Vijayakumar TS, Handy I (2014). Endocytosis‐mediated HIV‐1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology 456–457: 1–19.
    1. Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K (1996). Inhibition of HIV‐1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther 18: 1080–1092.
    1. Clemente R, De La Torre JC (2009). Cell entry of Borna disease virus follows a clathrin‐mediated endocytosis pathway that requires Rab5 and microtubules. J Virol 83: 10406–10416.
    1. Daecke J, Fackler OT, Dittmar MT, Krausslich HG (2005). Involvement of clathrin‐mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol 79: 1581–1594.
    1. De Lamballerie X, Boisson V, Reynier JC, Enault S, Charrel RN, Flahault A, et al. (2008). On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 8: 837–839.
    1. De Lamballerie X, Ninove L, Charrel RN (2009). Antiviral treatment of chikungunya virus infection. Infect Disord Drug Targets 9: 101–104.
    1. De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven‐Dobbe JC, Van Nieuwkoop S, Bestebroer TM, et al. (2014). Screening of an FDA‐approved compound library identifies four small‐molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 58: 4875–4884.
    1. Dedania B, Wu GY (2015). Dermatologic Extrahepatic Manifestations of Hepatitis C. J Clin Transl Hepatol 3: 127–133.
    1. Di Trani L, Savarino A, Campitelli L, Norelli S, Puzelli S, D'ostilio, D , et al. (2007). Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses. Virol J 4: 39.
    1. Dowall SD, Bosworth A, Watson R, Bewley K, Taylor I, Rayner E, et al. (2015). Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol 96: 3484–3492.
    1. Ekins S, Freundlich JS, Coffee M (2015). A common feature pharmacophore for FDA‐approved drugs inhibiting the Ebola virus. F1000Res 3: 277.
    1. Engchanil C, Kosalaraksa P, Lumbiganon P, Lulitanond V, Pongjunyakul P, Thuennadee R, et al. (2006). Therapeutic potential of chloroquine added to zidovudine plus didanosine for HIV‐1 infected children. J Med Assoc Thai 89: 1229–1236.
    1. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, et al. (2008). The ectodomain of Toll‐like receptor 9 is cleaved to generate a functional receptor. Nature 456: 658–662.
    1. Falzarano D, Safronetz D, Prescott J, Marzi A, Feldmann F, Feldmann H (2015). Lack of protection against ebola virus from chloroquine in mice and hamsters. Emerg Infect Dis 21: 1065–1067.
    1. Farias KJ, Machado PR, Da Fonseca BA (2013). Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells. Scientific World J 2013: 282734.
    1. Farias KJ, Machado PR, De Almeida Jr RF, De Aquino AA, Da Fonseca BA (2014). Chloroquine interferes with dengue‐2 virus replication in U937 cells. Microbiol Immunol 58: 318–326.
    1. Farias KJ, Machado PR, Muniz JA, Imbeloni AA, Da Fonseca BA (2015). Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys. Viral Immunol 28: 161–169.
    1. Fatima S, Sharma A, Saxena R, Tripathi R, Shukla SK, Pandey SK, et al. (2012). One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio‐evaluation as antimalarial and anti‐HIV agents. Eur J Med Chem 55: 195–204.
    1. Fedson DS (2008). Confronting an influenza pandemic with inexpensive generic agents: can it be done? Lancet Infect Dis 8: 571–576.
    1. Freund NT, Roitburd‐Berman A, Sui J, Marasco WA, Gershoni JM (2015). Reconstitution of the receptor‐binding motif of the SARS coronavirus. Protein Eng Des Sel 28: 567–575.
    1. Gandini M, Gras C, Azeredo EL, Pinto LM, Smith N, Despres P, et al. (2013). Dengue virus activates membrane TRAIL relocalization and IFN‐alpha production by human plasmacytoid dendritic cells in vitro and in vivo. PLoS Negl Trop Dis 7: e2257.
    1. Garulli B, Di Mario G, Sciaraffia E, Accapezzato D, Barnaba V, Castrucci MR (2013). Enhancement of T cell‐mediated immune responses to whole inactivated influenza virus by chloroquine treatment in vivo. Vaccine 31: 1717–1724.
    1. Gay B, Bernard E, Solignat M, Chazal N, Devaux C, Briant L (2012). pH‐dependent entry of chikungunya virus into Aedes albopictus cells. Infect Genet Evol 12: 1275–1281.
    1. Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, Geisbert JB, et al. (2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163: 2347–2370.
    1. Geisbert TW, Strong JE, Feldmann H (2015). Considerations in the use of nonhuman primate models of ebola virus and marburg virus infection. J Infect Dis 212(Suppl 2): S91–S97.
    1. Gonzalez‐Dunia D, Cubitt B, De La Torre JC (1998). Mechanism of Borna disease virus entry into cells. J Virol 72: 783–788.
    1. Jiang K, Li Y, Zhu Q, Xu J, Wang Y, Deng W, et al. (2014). Pharmacological modulation of autophagy enhances Newcastle disease virus‐mediated oncolysis in drug‐resistant lung cancer cells. BMC Cancer 14: 551.
    1. Kaur P, Chu JJ (2013). Chikungunya virus: an update on antiviral development and challenges. Drug Discov Today 18: 969–983.
    1. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (2004). In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 323: 264–268.
    1. Kissing S, Hermsen C, Repnik U, Nesset CK, Von Bargen K, Griffiths G, et al. (2014). Vacuolar ATPase in phagosome‐lysosome fusion. J Biol Chem 290: 14166–14180.
    1. Kraft TE, Armstrong C, Heitmeier MR, Odom AR, Hruz PW (2015). The glucose transporter PfHT1 is an antimalarial target of the HIV protease inhibitor lopinavir. Antimicrob Agents Chemother 59: 6203–6209.
    1. Laaksonen AL, Koskiahde V, Juva K (1974). Dosage of antimalarial drugs for children with juvenile rheumatoid arthritis and systemic lupus erythematosus. A clinical study with determination of serum concentrations of chloroquine and hydroxychloroquine. Scand J Rheumatol 3: 103–108.
    1. Leroux‐Roels G, Bourguignon P, Willekens J, Janssens M, Clement F, Didierlaurent AM, et al. (2014). Immunogenicity and safety of a booster dose of an investigational adjuvanted polyprotein HIV‐1 vaccine in healthy adults and effect of administration of chloroquine. Clin Vaccine Immunol 21: 302–311.
    1. Leroy EM, Baize S, Volchkov VE, Fisher‐Hoch SP, Georges‐Courbot MC, Lansoud‐Soukate J, et al. (2000). Human asymptomatic Ebola infection and strong inflammatory response. Lancet 355: 2210–2215.
    1. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. (2003). Angiotensin‐converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454.
    1. Long J, Wright E, Molesti E, Temperton N, Barclay W (2015). Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Res 4: 30.
    1. Mackenzie AH (1983). Antimalarial drugs for rheumatoid arthritis. Am J Med 75: 48–58.
    1. Madrid PB, Chopra S, Manger ID, Gilfillan L, Keepers TR, Shurtleff AC, et al. (2013). A systematic screen of FDA‐approved drugs for inhibitors of biological threat agents. PLoS ONE 8: e60579.
    1. Martinson JA, Montoya CJ, Usuga X, Ronquillo R, Landay AL, Desai SN (2014). Chloroquine modulates HIV‐1‐induced plasmacytoid dendritic cell alpha interferon: implication for T‐cell activation. Antimicrob Agents Chemother 54: 871–881.
    1. Marzi A, Reinheckel T, Feldmann H (2012). Cathepsin B & L are not required for ebola virus replication. PLoS Negl Trop Dis 6: e1923.
    1. Matsuda M, Suzuki R, Kataoka C, Watashi K, Aizaki H, Kato N, et al. (2014). Alternative endocytosis pathway for productive entry of hepatitis C virus. J Gen Virol 95: 2658–2667.
    1. Meng C, Zhou Z, Jiang K, Yu S, Jia L, Wu Y, et al. (2012). Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch Virol 157: 1011–1018.
    1. Meng Z, Zhang X, Wu J, Pei R, Xu Y, Yang D, et al. (2013). RNAi induces innate immunity through multiple cellular signaling pathways. PLoS ONE 8: e64708.
    1. Mizuguchi T, Ohashi N, Nomura W, Komoriya M, Hashimoto C, Yamamoto N, et al. (2015). Anti‐HIV screening for cell‐penetrating peptides using chloroquine and identification of anti‐HIV peptides derived from matrix proteins. Bioorg Med Chem 23: 4423–4427.
    1. Mizui T, Yamashina S, Tanida I, Takei Y, Ueno T, Sakamoto N, et al. (2009). Inhibition of hepatitis C virus replication by chloroquine targeting virus‐associated autophagy. J Gastroenterol 45: 195–203.
    1. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, et al. (2002). Hydroxychloroquine concentration‐response relationships in patients with rheumatoid arthritis. Arthritis Rheum 46: 1460–1469.
    1. Murr C, Widner B, Wirleitner B, Fuchs D (2002). Neopterin as a marker for immune system activation. Curr Drug Metab 3: 175–187.
    1. Murray SM, Down CM, Boulware DR, Stauffer WM, Cavert WP, Schacker TW, et al. (2010). Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol 84: 12082–12086.
    1. Naarding MA, Baan E, Pollakis G, Paxton WA (2007). Effect of chloroquine on reducing HIV‐1 replication in vitro and the DC‐SIGN mediated transfer of virus to CD4 + T‐lymphocytes. Retrovirology 4: 6.
    1. Neely M, Kalyesubula I, Bagenda D, Myers C, Olness K (2003). Effect of chloroquine on human immunodeficiency virus (HIV) vertical transmission. Afr Health Sci 3: 61–67.
    1. Ooi EE, Chew JS, Loh JP, Chua RC (2006). In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 3: 39.
    1. Ozden S, Lucas‐Hourani M, Ceccaldi PE, Basak A, Valentine M, Benjannet S, et al. (2008). Inhibition of Chikungunya virus infection in cultured human muscle cells by furin inhibitors: impairment of the maturation of the E2 surface glycoprotein. J Biol Chem 283: 21899–21908.
    1. Parris GE (2006). The timing is right: Evolution of AIDS‐causing HIV strains is consistent with history of chloroquine use. Med Hypotheses 67: 1258–1259.
    1. Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, et al. (2011). Chloroquine for influenza prevention: a randomised, double‐blind, placebo controlled trial. Lancet Infect Dis 11: 677–683.
    1. Paton NI, Goodall RL, Dunn DT, Franzen S, Collaco‐Moraes Y, Gazzard BG, et al. (2012). Effects of hydroxychloroquine on immune activation and disease progression among HIV‐infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 308: 353–361.
    1. Pellicelli AM, Morrone A, Barbieri L, Andreoli A (2012). Porphyria cutanea tarda in an HCV‐positive liver transplant patient: a case report. Ann Hepatol 11: 951–954.
    1. Peng T, Wang JL, Chen W, Zhang JL, Gao N, Chen ZT, et al. (2009). Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin‐dependent endocytosis, but not on caveolae‐dependent endocytosis. Can J Microbiol 55: 139–145.
    1. Piccini LE, Castilla V, Damonte EB (2015). Dengue‐3 virus entry into vero cells: role of clathrin‐mediated endocytosis in the outcome of infection. PLoS ONE 10: e0140824.
    1. Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri B, et al. (2011). Hydroxychloroquine drastically reduces immune activation in HIV‐infected, antiretroviral therapy‐treated immunologic nonresponders. Blood 118: 3263–3272.
    1. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus‐EMC. Nature 495: 251–254.
    1. Romanelli F, Smith KM, Hoven AD (2004). Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV‐1) activity. Curr Pharm Des 10: 2643–2648.
    1. Routy JP, Angel JB, Patel M, Kanagaratham C, Radzioch D, Kema I, et al. (2014). Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV‐infected patients receiving antiretroviral therapy. HIV Med 16: 48–56.
    1. Sanchez‐Felipe L, Villar E, Munoz‐Barroso I (2013). Entry of newcastle disease virus into the host cell: role of acidic pH and endocytosis. Biochim Biophys Acta 1838: 300–309.
    1. Savarino A (2011). Use of chloroquine in viral diseases. Lancet Infect Dis 11: 653–654.
    1. Savarino A, Shytaj IL (2015). Chloroquine and beyond: exploring anti‐rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology 12: 51.
    1. Savarino A, Gennero L, Chen HC, Serrano D, Malavasi F, Boelaert JR, et al. (2001a). Anti‐HIV effects of chloroquine: mechanisms of inhibition and spectrum of activity. AIDS 15: 2221–2229.
    1. Savarino A, Gennero L, Sperber K, Boelaert JR (2001b). The anti‐HIV‐1 activity of chloroquine. J Clin Virol 20: 131–135.
    1. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (2003). Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis 3: 722–727.
    1. Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, et al. (2004). Anti‐HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 35: 223–232.
    1. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A (2006). New insights into the antiviral effects of chloroquine. Lancet Infect Dis 6: 67–69.
    1. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004). Interferon‐gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163–189.
    1. Shivanna V, Kim Y, Chang KO (2014). Endosomal acidification and cathepsin L activity is required for calicivirus replication. Virology 464–465: 287–295.
    1. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel‐Benhassine F, Rudnicka D, et al. (2007). Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89.
    1. Sperber K, Louie M, Kraus T, Proner J, Sapira E, Lin S, et al. (1995). Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther 17: 622–636.
    1. Stock I (2009). Chikungunya fever–expanded distribution of a re‐emerging tropical infectious disease. Med Monatsschr Pharm 32: 17–26.
    1. Stuart AD, Brown TD (2006). Entry of feline calicivirus is dependent on clathrin‐mediated endocytosis and acidification in endosomes. J Virol 80: 7500–7509.
    1. Sun Y, Tien P (2012). From endocytosis to membrane fusion: emerging roles of dynamin in virus entry. Crit Rev Microbiol 39: 166–179.
    1. Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, et al. (2013). Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol 88: 525–537.
    1. Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, et al. (1997). A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94: 14764–14769.
    1. Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G, et al. (2007). Chikungunya fever in travelers: clinical presentation and course. Clin Infect Dis 45: e1–e4.
    1. Tobin DR, Krohel G, Rynes RI (1982). Hydroxychloroquine. Seven‐year experience. Arch Ophthalmol 100: 81–83.
    1. Tracey KJ, Cerami A (1994). Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45: 491–503.
    1. Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, et al. (2010). A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4:e785.
    1. Uneke CJ, Ogbonna A (2009). Malaria and HIV co‐infection in pregnancy in sub‐Saharan Africa: impact of treatment using antimalarial and antiretroviral agents. Trans R Soc Trop Med Hyg 103: 761–767.
    1. Vausselin T, Calland N, Belouzard S, Descamps V, Douam F, Helle F, et al. (2013). The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology 58: 86–97.
    1. Vigerust DJ, Mccullers JA (2007). Chloroquine is effective against influenza A virus in vitro but not in vivo. Influenza Other Respir Viruses 1: 189–192.
    1. Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, et al. (1999). Markedly elevated levels of interferon (IFN)‐gamma, IFN‐alpha, interleukin (IL)‐2, IL‐10, and tumor necrosis factor‐alpha associated with fatal Ebola virus infection. J Infect Dis 179(Suppl 1): S188–S191.
    1. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2: 69.
    1. Wang H, Jiang C (2009). Influenza A virus H5N1 entry into host cells is through clathrin‐dependent endocytosis. Sci China C Life Sci 52: 464–469.
    1. Wu L, Dai J, Zhao X, Chen Y, Wang G, Li K (2015). Chloroquine enhances replication of influenza A virus A/WSN/33 (H1N1) in dose‐, time‐, and MOI‐dependent manners in human lung epithelial cells A549. J Med Virol 87: 1096–1103.
    1. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. (2012). Anti‐malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 23: 300–302.
    1. Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, et al. (1998). Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279: 1034–1037.
    1. Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ (2000). Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 6: 886–889.
    1. Zhou X, Liu T, Franksson L, Lederer E, Ljunggren HG, Jondal M (1995). Characterization of TAP‐independent and brefeldin A‐resistant presentation of Sendai virus antigen to CD8 + cytotoxic T lymphocytes. Scand J Immunol 42: 66–75.

Source: PubMed

3
S'abonner