Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study

Junmei Wang, Junmei Wang

Abstract

The recent outbreak of novel coronavirus disease-19 (COVID-19) calls for and welcomes possible treatment strategies using drugs on the market. It is very efficient to apply computer-aided drug design techniques to quickly identify promising drug repurposing candidates, especially after the detailed 3D structures of key viral proteins are resolved. The virus causing COVID-19 is SARS-CoV-2. Taking advantage of a recently released crystal structure of SARS-CoV-2 main protease in complex with a covalently bonded inhibitor, N3 (Liu et al., 10.2210/pdb6LU7/pdb), I conducted virtual docking screening of approved drugs and drug candidates in clinical trials. For the top docking hits, I then performed molecular dynamics simulations followed by binding free energy calculations using an end point method called MM-PBSA-WSAS (molecular mechanics/Poisson-Boltzmann surface area/weighted solvent-accessible surface area; Wang, Chem. Rev. 2019, 119, 9478; Wang, Curr. Comput.-Aided Drug Des. 2006, 2, 287; Wang; ; Hou J. Chem. Inf. Model., 2012, 52, 1199). Several promising known drugs stand out as potential inhibitors of SARS-CoV-2 main protease, including carfilzomib, eravacycline, valrubicin, lopinavir, and elbasvir. Carfilzomib, an approved anticancer drug acting as a proteasome inhibitor, has the best MM-PBSA-WSAS binding free energy, -13.8 kcal/mol. The second-best repurposing drug candidate, eravacycline, is synthetic halogenated tetracycline class antibiotic. Streptomycin, another antibiotic and a charged molecule, also demonstrates some inhibitory effect, even though the predicted binding free energy of the charged form (-3.8 kcal/mol) is not nearly as low as that of the neutral form (-7.9 kcal/mol). One bioactive, PubChem 23727975, has a binding free energy of -12.9 kcal/mol. Detailed receptor-ligand interactions were analyzed and hot spots for the receptor-ligand binding were identified. I found that one hot spot residue, His41, is a conserved residue across many viruses including SARS-CoV, SARS-CoV-2, MERS-CoV, and hepatitis C virus (HCV). The findings of this study can facilitate rational drug design targeting the SARS-CoV-2 main protease.

Conflict of interest statement

The author declares no competing financial interest.

Figures

Figure 1
Figure 1
Two-dimensional structures of promising drugs for repurposing. All five approved drugs are in neural form under physiological conditions.
Figure 2
Figure 2
Two-dimensional structures of promising drugs for repurposing. All three approved drugs are in charged form under physiological conditions.
Figure 3
Figure 3
Two-dimensional structures of promising bioactives that are structurally similar to lopinavir. PubChem 88143175, although studied in neutral form, bears a −3 charge under physiological conditions.
Figure 4
Figure 4
Plots of root-mean-square deviations of receptor main chain atoms and ligand heavy atoms along the MD simulation time for (A) cocrystal ligand N3, (B) DB08889, (C) DB12329, (D) DB00385, (E) DB01601, and (F) DB11574.
Figure 5
Figure 5
Structural comparison between the crystal structure and a representative MD structure of SARS-CoV-2 main protease bound to the known ligand N3. The crystal structure is shown as blue cartoon with the cocrystal ligand shown as brown sticks, while the representative MD structure is shown in gray cartoon and the ligand as green sticks (panel A). The hot spot residues (ΔGlig–res < −3.0 kcal/mol) revealed by MM-GBSA analysis are shown in panel B; the more bluish a residue is colored, the stronger the interaction between the residue and the ligand.
Figure 6
Figure 6
Structural comparison between the crystal structure and a representative MD structure of SARS-CoV-2 main protease bound to three neutral ligands, DB08889, DB12329, and DB00385. The crystal structure is shown as blue cartoon with the docked ligand shown as brown sticks, while the representative MD structure is shown in gray cartoon and the ligand as green sticks. (A) DB08889, (B) DB12329, and (C) DB00385. The detailed ligand–receptor interactions are shown in the panels D–F. All the hot spot residues (ΔGlig–res < −3.0) revealed by MM-GBSA analyses are labeled and colored by a blue to red spectrum; the more bluish a residue is colored, the stronger the interaction between the residue and the ligand. (D) DB08889, (E) DB12329, and (F) DB00385.
Figure 7
Figure 7
Structural comparison between the crystal and a representative MD structure of SARS-CoV-2 main protease bound to two neutral ligands, DB01601 and DB11574. The crystal structure is shown as blue cartoon with the docked ligand shown as brown sticks, while the representative MD structure is shown in gray cartoon and the ligand as green sticks. (A) DB01601 and (B) DB11574. The detailed ligand–receptor interactions are shown in panels C and D. All the hot spot residues (ΔGlig–res < −3.0) revealed by MM-GBSA analyses are labeled and colored by a blue to red spectrum; the more bluish a residue is colored, the stronger interaction between the residue and the ligand. (C) DB01601 and (D) DB11574.
Figure 8
Figure 8
Structural comparison between the crystal structure and a representative MD structure of SARS-CoV-2 main protease bound to three charged ligands, DB01082, DB03147, and DB11184. The crystal structure is shown as blue cartoon with the docked ligand shown as brown sticks, while the representative MD structure is shown in gray cartoon and the ligand as green sticks. (A) DB01082, (B) DB03147, and (C) DB11184. The detailed ligand–receptor interactions are shown in panels D–F. All the hot spot residues (ΔGlig–res < −3.0) revealed by MM-GBSA analyses are labeled and colored by a blue to red spectrum; the more bluish a residue is colored, the stronger the interaction between the residue and the ligand. (D) DB01082, (E) DB03147, and (F) DB11184.
Figure 9
Figure 9
Structural comparison of proteases among three coronavirus viruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) (A) and between SARS-CoV-2 and hepatitis C NS3/4A proteases (B). The SARS-CoV-2 main protease is colored in gray, and its ligands are shown as green sticks. The following are the color codes for the other proteases: SARS-CoV protease and its cocrystal ligand, brown; MERS-CoV protease and its cocrystal ligand, blue; HCV NS3/4A, blue; cocrystal ligand of HCV NS3/4A, brown. Backbone RMSD between SARS-CoV and SARS-CoV-2 is 0.4711 Å, with 284 residues participating in the least-squares fitting and 22 omitted, and the backbone RMSD between MERS-CoV and SARS-CoV-2 is 0.41 Å, but with 195 residues participating in the least-squares fitting and 104 omitted. In contrast, the backbone RMSD between SARS-CoV-2 main protease and HCV NS3/4A is 2.2632 Å, with 108 residues participating in the least-squares fitting and 43 omitted.

References

    1. Liu X.; Zhang B.; Jin Z.; Yang H.; Rao Z.. Crystal structure of COVID-19 main protease in complex with an inhibitor N3. Protein DataBank, 2020, 10.2210/pdb6LU7/pdb.
    1. Wang E.; Sun H.; Wang J.; Wang Z.; Liu H.; Zhang J. Z. H.; Hou T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. 10.1021/acs.chemrev.9b00055.
    1. Wang J. M.; Hou T. J.; Xu X. J. Recent Advances in Free Energy Calculations with a Combination of Molecular Mechanics and Continuum Models. Curr. Comput.-Aided Drug Des. 2006, 2, 287–306. 10.2174/157340906778226454.
    1. Wang J.; Hou T. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. J. Chem. Inf. Model. 2012, 52, 1199–1212. 10.1021/ci300064d.
    1. Law V.; Knox C.; Djoumbou Y.; Jewison T.; Guo A. C.; Liu Y.; Maciejewski A.; Arndt D.; Wilson M.; Neveu V.; Tang A.; Gabriel G.; Ly C.; Adamjee S.; Dame Z. T.; Han B.; Zhou Y.; Wishart D. S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014, 42, D1091–1097. 10.1093/nar/gkt1068.
    1. Wang J.; Ge Y.; Xie X. Q. Development and Testing of Druglike Screening Libraries. J. Chem. Inf. Model. 2019, 59, 53–65. 10.1021/acs.jcim.8b00537.
    1. Friesner R. A.; Banks J. L.; Murphy R. B.; Halgren T. A.; Klicic J. J.; Mainz D. T.; Repasky M. P.; Knoll E. H.; Shelley M.; Perry J. K.; Shaw D. E.; Francis P.; Shenkin P. S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. 10.1021/jm0306430.
    1. Wang J.; Morin P.; Wang W.; Kollman P. A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123, 5221–5230. 10.1021/ja003834q.
    1. Swanson J. M.; Henchman R. H.; McCammon J. A. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 2004, 86, 67–74. 10.1016/S0006-3495(04)74084-9.
    1. Kuhn B.; Gerber P.; Schulz-Gasch T.; Stahl M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem. 2005, 48, 4040–4048. 10.1021/jm049081q.
    1. Hou T.; Wang J.; Li Y.; Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82. 10.1021/ci100275a.
    1. Xu L.; Sun H.; Li Y.; Wang J.; Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J. Phys. Chem. B 2013, 117, 8408–8421. 10.1021/jp404160y.
    1. Sun H.; Li Y.; Shen M.; Tian S.; Xu L.; Pan P.; Guan Y.; Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035–22045. 10.1039/C4CP03179B.
    1. Sun H.; Li Y.; Tian S.; Xu L.; Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719–16729. 10.1039/C4CP01388C.
    1. Chen F.; Liu H.; Sun H.; Pan P.; Li Y.; Li D.; Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys. Chem. Chem. Phys. 2016, 18, 22129–22139. 10.1039/C6CP03670H.
    1. Karami M.; Jalali C.; Mirzaie S. Combined virtual screening, MMPBSA, molecular docking and dynamics studies against deadly anthrax: An in silico effort to inhibit Bacillus anthracis nucleoside hydrolase. J. Theor. Biol. 2017, 420, 180–189. 10.1016/j.jtbi.2017.03.010.
    1. Chen F.; Sun H.; Wang J.; Zhu F.; Liu H.; Wang Z.; Lei T.; Li Y.; Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes. RNA 2018, 24, 1183–1194. 10.1261/rna.065896.118.
    1. Mishra S. K.; Koca J. Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions. J. Phys. Chem. B 2018, 122, 8113–8121. 10.1021/acs.jpcb.8b03655.
    1. Sun H.; Duan L.; Chen F.; Liu H.; Wang Z.; Pan P.; Zhu F.; Zhang J. Z. H.; Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end- point binding free energy calculation approaches. Phys. Chem. Chem. Phys. 2018, 20, 14450–14460. 10.1039/C7CP07623A.
    1. Wang E.; Weng G.; Sun H.; Du H.; Zhu F.; Chen F.; Wang Z.; Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein-protein Interactions. Phys. Chem. Chem. Phys. 2019, 21, 18958–18969. 10.1039/C9CP04096J.
    1. Weng G.; Wang E.; Chen F.; Sun H.; Wang Z.; Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein- peptide complexes. Phys. Chem. Chem. Phys. 2019, 21, 10135–10145. 10.1039/C9CP01674K.
    1. Lee T. S.; Hu Y.; Sherborne B.; Guo Z.; York D. M. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration. J. Chem. Theory Comput. 2017, 13, 3077–3084. 10.1021/acs.jctc.7b00102.
    1. Wang L.; Wu Y.; Deng Y.; Kim B.; Pierce L.; Krilov G.; Lupyan D.; Robinson S.; Dahlgren M. K.; Greenwood J.; Romero D. L.; Masse C.; Knight J. L.; Steinbrecher T.; Beuming T.; Damm W.; Harder E.; Sherman W.; Brewer M.; Wester R.; Murcko M.; Frye L.; Farid R.; Lin T.; Mobley D. L.; Jorgensen W. L.; Berne B. J.; Friesner R. A.; Abel R. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free- energy calculation protocol and force field. J. Am. Chem. Soc. 2015, 137, 2695–2703. 10.1021/ja512751q.
    1. Wang J.; Kang X.; Kuntz I. D.; Kollman P. A. Hierarchical database screenings for HIV-1 reverse transcriptase using a pharmacophore model, rigid docking, solvation docking, and MM-PB/SA. J. Med. Chem. 2005, 48, 2432–2444. 10.1021/jm049606e.
    1. Zhang L.; Lin D.; Sun X.; Curth U.; Drosten C.; Sauerhering L.; Becker S.; Rox K.; Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, eabb3405.10.1126/science.abb3405.
    1. Capparelli E. V.; Holland D.; Okamoto C.; Gragg B.; Durelle J.; Marquie-Beck J.; van den Brande G.; Ellis R.; Letendre S.; Lopinavir concentrations in cerebrospinal fluid exceed the 50% inhibitory concentration for HIV. AIDS 2005, 19, 949–952. 10.1097/01.aids.0000171409.38490.48.
    1. O’Boyle N. M.; Banck M.; James C. A.; Morley C.; Vandermeersch T.; Hutchison G. R. Open Babel: An open chemical toolbox. J. Cheminf. 2011, 3, 33.10.1186/1758-2946-3-33.
    1. Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926.10.1063/1.445869.
    1. Bayly C. I.; Cieplak P.; Cornell W. D.; Kollman P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges- the RESP model. J. Phys. Chem. 1993, 97, 10269–10280. 10.1021/j100142a004.
    1. Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision B.01.; Gaussian, Inc.: Wallingford CT, 2016.
    1. Wang J. M.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. 10.1002/jcc.20035.
    1. Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–713. 10.1021/acs.jctc.5b00255.
    1. Wang J.; Wang W.; Kollman P. A.; Case D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modell. 2006, 25, 247–260. 10.1016/j.jmgm.2005.12.005.
    1. Case D. A.; Ben-Shalom I. Y.; Brozell S. R.; Cerutti D. S.; Cheatham T.E. III; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Ghoreishi D.; Gilson M. K.; Gohlke H.; Goetz A. W.; Greene D.; Harris R.; Homeyer N.; Izadi S.; Kovalenko A.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Mermelstein D. J.; Merz K. M.; Miao Y.; Monard G.; Nguyen C.; Nguyen H.; Omelyan I.; Onufriev A.; Pan F.; Qi R.; Roe D. R.; Roitberg A.; Sagui C.; Schott- Verdugo S.; Shen J.; Simmerling C. L.; Smith J.; Salomon-Ferrer R.; Swails J.; Walker R. C.; Wang J.; Wei H.; Wolf R. M.; Wu X.; Xiao L.; York D. M.; Kollman P. A.. AMBER 2018; University of California: San Francisco, CA, 2018.
    1. Larini L.; Mannella R.; Leporini D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J. Chem. Phys. 2007, 126, 104101.10.1063/1.2464095.
    1. Darden T.; Perera L.; Li L.; Pedersen L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 1999, 7, R55–60. 10.1016/S0969-2126(99)80033-1.
    1. Miyamoto S.; Kollman P. A. Settle - an analytical version of the Shake and Rattle algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805.
    1. Page C. S.; Bates P. A. Can MM-PBSA calculations predict the specificities of protein kinase inhibitors?. J. Comput. Chem. 2006, 27, 1990–2007. 10.1002/jcc.20534.
    1. Kongsted J.; Ryde U. An improved method to predict the entropy term with the MM/PBSA approach. J. Comput.-Aided Mol. Des. 2009, 23, 63–71. 10.1007/s10822-008-9238-z.
    1. Hou T.; Wang J.; Li Y.; Wang W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem. 2011, 32, 866–877. 10.1002/jcc.21666.
    1. Sitkoff D.; Sharp K. A.; Honig B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978–1988. 10.1021/j100058a043.
    1. Hawkins G. D.; Cramer C. J.; Truhlar D. G. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 1996, 100, 19824–19839. 10.1021/jp961710n.
    1. Liao S. M.; Du Q. S.; Meng J. Z.; Pang Z. W.; Huang R. B. The multiple roles of histidine in protein interactions. Chem. Cent. J. 2013, 7, 44.10.1186/1752-153X-7-44.
    1. Wray R.; Iscla I.; Gao Y.; Li H.; Wang J.; Blount P. Dihydrostreptomycin Directly Binds to, Modulates, and Passes through the MscL Channel Pore. PLoS Biol. 2016, 14, e1002473.10.1371/journal.pbio.1002473.
    1. Pei J.; Grishin N. V. PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 2007, 23, 802–808. 10.1093/bioinformatics/btm017.
    1. Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014, 281, 4085–4096. 10.1111/febs.12936.
    1. Galasiti Kankanamalage A. C.; Kim Y.; Damalanka V. C.; Rathnayake A. D.; Fehr A. R.; Mehzabeen N.; Battaile K. P.; Lovell S.; Lushington G. H.; Perlman S.; Chang K. O.; Groutas W. C. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur. J. Med. Chem. 2018, 150, 334–346. 10.1016/j.ejmech.2018.03.004.
    1. Romano K. P.; Ali A.; Royer W. E.; Schiffer C. A. Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20986–20991. 10.1073/pnas.1006370107.
    1. Webb B.; Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Protein Sci. 2016, 86, 5.6.1–5.6.37. 10.1002/cpps.20.

Source: PubMed

3
S'abonner