Positive association between baseline brachial-ankle pulse wave velocity and the risk of new-onset diabetes in hypertensive patients

Yuanyuan Zhang, Panpan He, Youbao Li, Yan Zhang, Jianping Li, Min Liang, Guobao Wang, Genfu Tang, Yun Song, Binyan Wang, Chengzhang Liu, Lishun Liu, Yimin Cui, Xiaobin Wang, Yong Huo, Xiping Xu, Xianhui Qin, Yuanyuan Zhang, Panpan He, Youbao Li, Yan Zhang, Jianping Li, Min Liang, Guobao Wang, Genfu Tang, Yun Song, Binyan Wang, Chengzhang Liu, Lishun Liu, Yimin Cui, Xiaobin Wang, Yong Huo, Xiping Xu, Xianhui Qin

Abstract

Background: There is no clearly defined temporal relationship between arterial stiffness and diabetes. We aimed to investigate the prospective association between baseline brachial-ankle pulse wave velocity (baPWV) and the risk of new-onset diabetes during follow-up, and examined whether there were effect modifiers, in hypertensive patients.

Methods: We included 2429 hypertensive patients with all the pertinent data but without diabetes at the baseline, who were part of the China Stroke Primary Prevention Trial (CSPPT), a randomized, double-blind, actively controlled trial conducted in 32 communities in Anhui and Jiangsu provinces in China. The primary outcome was new-onset diabetes, defined as physician-diagnosed diabetes or use of glucose-lowering drugs during follow-up, or fasting glucose (FG) ≥ 126.0 mg/dL at the exit visit.

Results: During a median follow-up duration of 4.5 years, 287 (11.8%) participants developed diabetes. There was a significant positive association between baseline baPWV and the risk of new-onset diabetes (per SD increment; OR, 1.33; 95% CI 1.13, 1.56). Consistently, when baPWV was assessed as quartiles, a significantly higher risk of new-onset diabetes was found in participants in quartiles 2-4 (≥ 15.9 m/s; OR, 1.80; 95% CI 1.22, 2.65) compared with those in quartile 1 (< 15.9 m/s). The positive association was consistent in participants with (per SD increment; OR, 1.29; 95% CI 1.06, 1.56) or without (per SD increment; OR, 1.40; 95% CI 1.15, 1.71) impaired fasting glucose (IFG, FG ≥ 100.8 and < 126.0 mg/dL, P-interaction = 0.486).

Conclusions: In this sample of hypertensive patients, we found a significant positive association between baseline baPWV and the risk of new-onset diabetes. Clinical trial registration Trial registration: NCT00794885 (clinicaltrials.gov). Retrospectively registered November 20, 2008.

Keywords: Brachial–ankle pulse wave velocity; Fasting glucose; Hypertensive patients; New-onset diabetes.

Conflict of interest statement

XPX reports grants from the National Key Research and Development Program [2016YFE0205400, 2018ZX09739, 2018ZX09301034003]; the Science and Technology Planning Project of Guangzhou, China [201707020010]; the Science, Technology and Innovation Committee of Shenzhen [JSGG20170412155639040, GJHS2017031411 4526143] and the Economic, Trade and Information Commission of Shenzhen Municipality [20170505161556110, 20170505160926390].

XHQ reports grants from the National Natural Science Foundation of China [81730019] and Outstanding Youths Development Scheme of Nanfang Hospital, Southern Medical University [2017J009].

YBL reports grants from the President Foundation of Nanfang Hospital, Southern Medical University [2017C007, 2018Z009].

No other disclosures were reported.

Figures

Fig. 1
Fig. 1
Association between baseline brachial–ankle pulse wave velocity (baPWV) and new-onset diabetes during follow-up. *Adjusted for age, sex, study center, study treatment group, body mass index (BMI), heart rate, smoking, systolic blood pressure (SBP), fasting glucose (FG), total cholesterol (TC), creatinine, and folate at baseline, as well as time-averaged SBP during the treatment period
Fig. 2
Fig. 2
Risk of new-onset diabetes (expressed as OR and 95% CI) based on brachial–ankle pulse wave velocity (baPWV) quartiles. *Adjusted for age, sex, study center, study treatment group, body mass index (BMI), heart rate, smoking, systolic blood pressure (SBP), fasting glucose (FG), total cholesterol (TC), creatinine, and folate at baseline, as well as time-averaged SBP during the treatment period
Fig. 3
Fig. 3
Association between baseline brachial–ankle pulse wave velocity (baPWV) (per SD increment) and new-onset diabetes during follow-up in various subgroups. *Adjusted for age, sex, study center, study treatment group, body mass index (BMI), heart rate, smoking, systolic blood pressure (SBP), fasting glucose (FG), total cholesterol (TC), creatinine, and folate at baseline, as well as time-averaged SBP during the treatment period, if not be stratified

References

    1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–149. doi: 10.1016/j.diabres.2013.11.002.
    1. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13 000 men and women with 20 years of follow-up. Arch Intern Med. 2004;164:1422–1426. doi: 10.1001/archinte.164.13.1422.
    1. Zelnick LR, Weiss NS, Kestenbaum BR, Robinson-Cohen C, Heagerty PJ, Tuttle K, et al. Diabetes and CKD in the United States population, 2009–2014. Clin J Am Soc Nephrol. 2017;12:1984–1990. doi: 10.2215/CJN.03700417.
    1. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–881. doi: 10.1001/2012.jama.10503.
    1. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011;57:1511–1522. doi: 10.1016/j.jacc.2010.12.017.
    1. Munakata M. Brachial–ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr Hypertens Rev. 2014;10:49–57. doi: 10.2174/157340211001141111160957.
    1. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial–ankle pulse wave velocity measurement. Hypertens Res. 2002;25:359–364. doi: 10.1291/hypres.25.359.
    1. Song Y, Xu B, Xu R, Tung R, Frank E, Tromble W, et al. Independent and joint effect of brachial–ankle pulse wave velocity and blood pressure control on incident stroke in hypertensive adults. Hypertension. 2016;68:46–53. doi: 10.1161/HYPERTENSIONAHA.115.07023.
    1. Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial–ankle elasticity index: a systematic review and meta-analysis. Hypertension. 2012;60:556–562. doi: 10.1161/HYPERTENSIONAHA.112.194779.
    1. Tomiyama H, Komatsu S, Shiina K, Matsumoto C, Kimura K, Fujii M, et al. Effect of wave reflection and arterial stiffness on the risk of development of hypertension in Japanese men. J Am Heart Assoc. 2018;7:e008175. doi: 10.1161/JAHA.117.008175.
    1. Lee JY, Ryu S, Lee SH, Kim BJ, Kim BS, Kang JH, et al. Association between brachial–ankle pulse wave velocity and progression of coronary artery calcium: a prospective cohort study. Cardiovasc Diabetol. 2015;14:147. doi: 10.1186/s12933-015-0311-3.
    1. Yu WC, Chuang SY, Lin YP, Chen CH. Brachial–ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. J Hum Hypertens. 2008;22:24–31. doi: 10.1038/sj.jhh.1002259.
    1. Loehr LR, Meyer ML, Poon AK, Selvin E, Palta P, Tanaka H, et al. Prediabetes and diabetes are associated with arterial stiffness in older adults: the ARIC study. Am J Hypertens. 2016;29:1038–1045. doi: 10.1093/ajh/hpw036.
    1. Won KB, Chang HJ, Kim HC, Jeon K, Lee H, Shin S, et al. Differential impact of metabolic syndrome on subclinical atherosclerosis according to the presence of diabetes. Cardiovasc Diabetol. 2013;12:41. doi: 10.1186/1475-2840-12-41.
    1. Li C, Wu J, Yang Y, Shih C, Lu F, Chang C. Increased arterial stiffness in subjects with impaired glucose tolerance and newly diagnosed diabetes but not isolated impaired fasting glucose. J Clin Endocrinol Metab. 2012;97:E658–E662. doi: 10.1210/jc.2011-2595.
    1. Zheng M, Huo Y, Wang X, Xu X, Qin X, Tang G, et al. A prospective study on pulse wave velocity (PWV) and response to anti-hypertensive treatments: PWV determines BP control. Int J Cardiol. 2015;178:226–231. doi: 10.1016/j.ijcard.2014.10.049.
    1. Izzo R, de Simone G, Chinali M, Iaccarino G, Trimarco V, Rozza F, et al. Insufficient control of blood pressure and incident diabetes. Diabetes Care. 2009;32:845–850. doi: 10.2337/dc08-1881.
    1. Prenner SB, Chirinos JA. Arterial stiffness in diabetes mellitus. Atherosclerosis. 2015;238:370–379. doi: 10.1016/j.atherosclerosis.2014.12.023.
    1. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015;313:1325–1335. doi: 10.1001/jama.2015.2274.
    1. Qin X, Li J, Zhang Y, Chen D, Wang B, He M, et al. Effect of folic acid supplementation on risk of new-onset diabetes in adults with hypertension in China: findings from the China Stroke Primary Prevention Trial (CSPPT) J Diabetes. 2016;8:286–294. doi: 10.1111/1753-0407.12346.
    1. Zhao M, Wang X, He M, Qin X, Tang G, Huo Y, et al. Homocysteine and stroke risk: modifying effect of methylenetetrahydrofolate reductase C677T polymorphism and folic acid intervention. Stroke. 2017;48:1183–1190. doi: 10.1161/STROKEAHA.116.015324.
    1. Qin X, Li J, Spence JD, Zhang Y, Li Y, Wang X, et al. Folic acid therapy reduces the first stroke risk associated with hypercholesterolemia among hypertensive patients. Stroke. 2016;47:2805–2812. doi: 10.1161/STROKEAHA.116.014578.
    1. He M, Qin X, Cui Y, Cai Y, Sun L, Xu X, et al. Prevalence of unrecognized lower extremity peripheral arterial disease and the associated factors in Chinese hypertensive adults. Am J Cardiol. 2012;110:1692–1698. doi: 10.1016/j.amjcard.2012.07.038.
    1. Qin X, Zhang Y, Cai Y, He M, Sun L, Fu J, et al. Prevalence of obesity, abdominal obesity and associated factors in hypertensive adults aged 45–75 years. Clin Nutr. 2013;32:361–367. doi: 10.1016/j.clnu.2012.08.005.
    1. Qin X, Li J, Zhang Y, Ma W, Fan F, Wang B, et al. Prevalence and associated factors of diabetes and impaired fasting glucose in Chinese hypertensive adults aged 45 to 75 years. PLoS ONE. 2012;7:e42538. doi: 10.1371/journal.pone.0042538.
    1. de Oliveira Alvim R, Santos PCJL, Musso MM, de Sá Cunha R, Krieger JE, Mill JG, et al. Impact of diabetes mellitus on arterial stiffness in a representative sample of an urban Brazilian population. Diabetol Metab Syndr. 2013;5:45. doi: 10.1186/1758-5996-5-45.
    1. Ferreira MT, Leite NC, Cardoso CR, Salles GF. Correlates of aortic stiffness progression in patients with type 2 diabetes: importance of glycemic control: the Rio de Janeiro type 2 diabetes cohort study. Diabetes Care. 2015;38:897–904. doi: 10.2337/dc14-2791.
    1. Izzo R, de Simone G, Trimarco V, Gerdts E, Giudice R, Vaccaro O, et al. Hypertensive target organ damage predicts incident diabetes mellitus. Eur Heart J. 2013;34:3419–3426. doi: 10.1093/eurheartj/eht281.
    1. Anan F, Masaki T, Eto T, Fukunaga N, Iwao T, Kaneda K, et al. Postchallenge plasma glucose and glycemic spikes are associated with pulse pressure in patients with impaired glucose tolerance and essential hypertension. Hypertens Res. 2008;31:1565–1571. doi: 10.1291/hypres.31.1565.
    1. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34:575–584. doi: 10.1016/j.cjca.2017.12.005.
    1. Sun L, Ning C, Liu J, Yao T, Zhang L, Zhao L, et al. The association between cumulative C-reactive protein and brachial–ankle pulse wave velocity. Aging Clin Exp Res. 2019 doi: 10.1007/s40520-019-01274-8.
    1. Lee SB, Ahn CW, Lee BK, Kang S, Nam JS, You JH, et al. Association between triglyceride glucose index and arterial stiffness in Korean adults. Cardiovasc Diabetol. 2018;17:41. doi: 10.1186/s12933-018-0692-1.
    1. Rodriguez AJ, Karim MN, Srikanth V, Ebeling PR, Scott D. Lower muscle tissue is associated with higher pulse wave velocity: a systematic review and meta-analysis of observational study data. Clin Exp Pharmacol Physiol. 2017;44:980–992. doi: 10.1111/1440-1681.12805.
    1. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101:1780–1784. doi: 10.1161/01.CIR.101.15.1780.
    1. Conen D, Ridker PM, Mora S, Buring JE, Glynn RJ. Blood pressure and risk of developing type 2 diabetes mellitus: the Women’s Health Study. Eur Heart J. 2007;28:2937–2943. doi: 10.1093/eurheartj/ehm400.
    1. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–817. doi: 10.2337/diabetes.52.3.812.
    1. Lee DY, Lee ES, Kim JH, Park SE, Park CY, Oh KW, et al. Predictive value of triglyceride glucose index for the risk of incident diabetes: a 4-year retrospective longitudinal study. PLoS ONE. 2016;11:e0163465. doi: 10.1371/journal.pone.0163465.
    1. de Simone G, Wang W, Best LG, Yeh F, Izzo R, Mancusi C, et al. Target organ damage and incident type 2 diabetes mellitus: the Strong Heart Study. Cardiovasc Diabetol. 2017;16:64. doi: 10.1186/s12933-017-0542-6.
    1. Yang L, Yang L, Zhang Y, Xi B. Prevalence of target organ damage in Chinese hypertensive children and adolescents. Front Pediatr. 2018;6:333. doi: 10.3389/fped.2018.00333.
    1. Murai J, Nishizawa H, Otsuka A, Fukuda S, Tanaka Y, Nagao H, et al. Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovasc Diabetol. 2018;17:112. doi: 10.1186/s12933-018-0755-3.
    1. Mannucci E, Dicembrini I, Lauria A, Pozzilli P. Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care. 2013;36(Suppl 2):S259–S263. doi: 10.2337/dcS13-2018.
    1. Agata J, Nagahara D, Kinoshita S, Takagawa Y, Moniwa N, Yoshida D, et al. Angiotensin II receptor blocker prevents increased arterial stiffness in patients with essential hypertension. Circ J. 2004;68:1194–1198. doi: 10.1253/circj.68.1194.
    1. NAVIGATOR Study Group. McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362:1477–1490. doi: 10.1056/NEJMoa1001121.
    1. Scheen AJ. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta-analysis of randomised clinical trials. Diabetes Metab. 2004;30:487–496. doi: 10.1016/S1262-3636(07)70146-5.
    1. Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:217–223. doi: 10.7326/0003-4819-147-4-200708210-00175.
    1. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT) JAMA. 2009;301:39–51. doi: 10.1001/jama.2008.864.
    1. Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007;30:829–834. doi: 10.2337/dc06-1726.
    1. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003–2004. Environ Health Perspect. 2009;117:1409–1413. doi: 10.1289/ehp.0900704.

Source: PubMed

3
S'abonner