Activity of the Gamma Secretase Inhibitor AL101 in Desmoid Tumors: A Case Report of 2 Adult Cases

David Chan, Jason Kaplan, Gary Gordon, Jayesh Desai, David Chan, Jason Kaplan, Gary Gordon, Jayesh Desai

Abstract

Desmoid tumors (aggressive fibromatosis) are soft tissue mesenchymal tumors that can be locally invasive and life-threatening. Depending on the location, these tumors are often unresectable or tend to recur after surgery. To date, there are no approved systemic therapies for desmoid tumors. These tumors typically harbor mutations in the β-catenin oncogene CTNNB1 or the tumor suppressor gene adenomatous polyposis coli, resulting in constitutive activation of the WNT pathway. The Notch pathway is part of the underlying cause for desmoid tumor development, possibly due to crosstalk with the WNT pathway, providing a rationale for Notch inhibition as a therapeutic strategy. The gamma secretase activation of the Notch receptor can be targeted with investigational gamma secretase inhibitors. In this case report, we follow the course of 2 patients with desmoid tumors treated with the highly potent, parenterally administered investigational gamma secretase inhibitor AL101, resulting in long-lasting responses. Case 1 reports on a patient with a mesenteric desmoid tumor who participated in a phase 1 trial and then transitioned into a compassionate use program; Case 2 reports on a patient with recurrent pelvic tumors receiving AL101 through a compassionate use program. After tumor progression on other systemic therapies, Cases 1 and 2 had confirmed partial responses (41% and 60% maximal tumor size decrease from baseline) recorded after 1.0 and 1.6 years of treatment with AL101, with a duration of response of 8.6+ and 2.6+ years, respectively. Also, in a phase 1 study of AL102, a potent orally administered gamma secretase inhibitor that shares structural features with AL101, a patient with a desmoid tumor was noted to have tumor shrinkage. Formal clinical testing of AL102 for the treatment of patients with desmoid tumors that are not amenable to surgery or are refractory to/recurrent from other prior therapies is currently underway.

Trial registration: ClinicalTrials.gov NCT01292655.

Keywords: AL102; BMS-906024; BMS-986115; Notch pathway; aggressive fibromatosis; rare disease.

Conflict of interest statement

D.C. received honoraria, travel support and research grants from Ipsen and Novartis and research grants from EMD Serono, unrelated to the current research. J.D. received consulting fees from Roche/Genentech, Eisai, BeiGene, GlaxoSmithKline, Amgen, Pierre Fabre, Bayer and research support from Roche/Genentech, Bristol Myers Squibb, GlaxoSmithKline, AstraZeneca, BeiGene, Novartis, Eli Lilly. J.K. and G.G. are employees of Ayala Pharmaceuticals and own stock and/or hold stock options in the company.

Figures

Figure 1
Figure 1
Change in desmoid tumor size from baseline in both patients by RECIST v1.1. Notes: Dotted line denotes change from baseline of 30%. Abbreviations: C, cycle; QW, once weekly; Q2W, once every 2 weeks; Q3W, once every3 weeks; Q4W, once every 4 weeks; W, week; RECIST, Response Evaluation Criteria in Solid Tumors.
Figure 2
Figure 2
CT scans of target lesions at baseline and after achieving PR in both patients. Abbreviations: C, cycle; CT, computed tomography; D, day; PR, partial response.
Figure 3
Figure 3
HES1 relative expression level at week 1 and week 4 of cycle 1 in Case 1. Abbreviations: C, cycle; D, day; h, hour.

References

    1. Looi W.S., Indelicato D.J., Rutenberg M.S. The Role of Radiation Therapy for Symptomatic Desmoid Tumors. Curr. Treat. Options Oncol. 2021;22:34. doi: 10.1007/s11864-021-00831-6.
    1. Desmoid Tumor Working G. The management of desmoid tumours: A joint global consensus-based guideline approach for adult and paediatric patients. Eur. J. Cancer. 2020;127:96–107. doi: 10.1016/j.ejca.2019.11.013.
    1. Wu C., Amini-Nik S., Nadesan P., Stanford W.L., Alman B.A. Aggressive fibromatosis (desmoid tumor) is derived from mesenchymal progenitor cells. Cancer Res. 2010;70:7690–7698. doi: 10.1158/0008-5472.CAN-10-1656.
    1. National Center for Advancing Translational Studies. Genetic and Rare Diseases Information Center (GARD) FAQs About Rare Diseases. [(accessed on 1 September 2021)]; Available online: .
    1. van Broekhoven D.L., Grunhagen D.J., den Bakker M.A., van Dalen T., Verhoef C. Time trends in the incidence and treatment of extra-abdominal and abdominal aggressive fibromatosis: A population-based study. Ann. Surg. Oncol. 2015;22:2817–2823. doi: 10.1245/s10434-015-4632-y.
    1. Crago A.M., Denton B., Salas S., Dufresne A., Mezhir J.J., Hameed M., Gonen M., Singer S., Brennan M.F. A prognostic nomogram for prediction of recurrence in desmoid fibromatosis. Ann. Surg. 2013;258:347–353. doi: 10.1097/SLA.0b013e31828c8a30.
    1. Peng P.D., Hyder O., Mavros M.N., Turley R., Groeschl R., Firoozmand A., Lidsky M., Herman J.M., Choti M., Ahuja N., et al. Management and recurrence patterns of desmoids tumors: A multi-institutional analysis of 211 patients. Ann. Surg. Oncol. 2012;19:4036–4042. doi: 10.1245/s10434-012-2634-6.
    1. National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines. Soft Tissue Sarcoma. Version 1.2021. [(accessed on 1 September 2021)]. Available online: .
    1. Domont J., Salas S., Lacroix L., Brouste V., Saulnier P., Terrier P., Ranchere D., Neuville A., Leroux A., Guillou L., et al. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: A potential molecular tool for disease management. Br. J. Cancer. 2010;102:1032–1036. doi: 10.1038/sj.bjc.6605557.
    1. Lazar A.J., Tuvin D., Hajibashi S., Habeeb S., Bolshakov S., Mayordomo-Aranda E., Warneke C.L., Lopez-Terrada D., Pollock R.E., Lev D. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am. J. Pathol. 2008;173:1518–1527. doi: 10.2353/ajpath.2008.080475.
    1. Salas S., Chibon F., Noguchi T., Terrier P., Ranchere-Vince D., Lagarde P., Benard J., Forget S., Blanchard C., Domont J., et al. Molecular characterization by array comparative genomic hybridization and DNA sequencing of 194 desmoid tumors. Genes Chromosomes Cancer. 2010;49:560–568. doi: 10.1002/gcc.20766.
    1. De Marchis M.L., Tonelli F., Quaresmini D., Lovero D., Della-Morte D., Silvestris F., Guadagni F., Palmirotta R. Desmoid Tumors in Familial Adenomatous Polyposis. Anticancer Res. 2017;37:3357–3366. doi: 10.21873/anticanres.11702.
    1. Robanus-Maandag E., Bosch C., Amini-Nik S., Knijnenburg J., Szuhai K., Cervera P., Poon R., Eccles D., Radice P., Giovannini M., et al. Familial adenomatous polyposis-associated desmoids display significantly more genetic changes than sporadic desmoids. PLoS ONE. 2011;6:e24354. doi: 10.1371/journal.pone.0024354.
    1. Shang H., Braggio D., Lee Y.J., Al Sannaa G.A., Creighton C.J., Bolshakov S., Lazar A.J., Lev D., Pollock R.E. Targeting the Notch pathway: A potential therapeutic approach for desmoid tumors. Cancer. 2015;121:4088–4096. doi: 10.1002/cncr.29564.
    1. Krishnamurthy N., Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018;62:50–60. doi: 10.1016/j.ctrv.2017.11.002.
    1. Takebe N., Miele L., Harris P.J., Jeong W., Bando H., Kahn M., Yang S.X., Ivy S.P. Targeting Notch, Hedgehog and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol. 2015;12:445–464. doi: 10.1038/nrclinonc.2015.61.
    1. El-Khoueiry A.B., Desai J., Iyer S.P., Gadgeel S.M., Ramalingam S.S., Horn L., LoRusso P., Bajaj G., Kollia G., Qi Z., et al. A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. J. Clin. Oncol. 2018;36:2515. doi: 10.1200/JCO.2018.36.15_suppl.2515.
    1. Kummar S., O’Sullivan Coyne G., Do K.T., Turkbey B., Meltzer P.S., Polley E., Choyke P.L., Meehan R., Vilimas R., Horneffer Y., et al. Clinical Activity of the gamma-Secretase Inhibitor PF-03084014 in Adults With Desmoid Tumors (Aggressive Fibromatosis) J. Clin. Oncol. 2017;35:1561–1569. doi: 10.1200/JCO.2016.71.1994.
    1. Messersmith W.A., Shapiro G.I., Cleary J.M., Jimeno A., Dasari A., Huang B., Shaik M.N., Cesari R., Zheng X., Reynolds J.M., et al. A Phase I, dose-finding study in patients with advanced solid malignancies of the oral gamma-secretase inhibitor PF-03084014. Clin. Cancer. Res. 2015;21:60–67. doi: 10.1158/1078-0432.CCR-14-0607.
    1. Takahashi T., Prensner J.R., Robson C.D., Janeway K.A., Weigel B.J. Safety and efficacy of gamma-secretase inhibitor nirogacestat (PF-03084014) in desmoid tumor: Report of four pediatric/young adult cases. Pediatr. Blood Cancer. 2020;67:e28636. doi: 10.1002/pbc.28636.
    1. Aung K.L., El-Khoueiry A.B., Gelmon K., Tran B., Bajaj G., He B., Chen T., Zhu L., Poojary S., Basak S., et al. A multi-arm phase I dose escalating study of an oral NOTCH inhibitor BMS-986115 in patients with advanced solid tumours. Investig. New Drugs. 2018;36:1026–1036. doi: 10.1007/s10637-018-0597-6.
    1. Gavai A.V., Quesnelle C., Norris D., Han W.C., Gill P., Shan W., Balog A., Chen K., Tebben A., Rampulla R., et al. Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors. ACS Med. Chem. Lett. 2015;6:523–527. doi: 10.1021/acsmedchemlett.5b00001.
    1. Ferrarotto R., Ho A.L., Wirth L.J., Dekel E., Walker R.W., Vergara-Silva A.L. ACCURACY: Phase (P) 2 trial of AL101, a pan-Notch inhibitor, in patients (pts) with recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) with Notch activating mutations (Notchact mut) J. Clin. Oncol. 2019;37:15_suppl–TPS6098. doi: 10.1200/JCO.2019.37.15_suppl.TPS6098.
    1. Ferrarotto R., Wirth L.J., Muzaffar J., Rodriguez C.P., Xia B., Perez C.A., Bowles D.W., Winquist E., Hotte S.J., Metcalf R., et al. 919MO ACCURACY a phase II trial of AL101, a selective gamma secretase inhibitor, in subjects with recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) harboring Notch activating mutations (Notchmut) Ann. Oncol. 2020;31:S663. doi: 10.1016/j.annonc.2020.08.1034.
    1. Traina T.A., Cobain E.F., Evron E., Duksin C., Gordon G. Tenacity: A phase 2, multicenter, open-label, single-arm study of AL101 monotherapy in patients with notch-activated triple negative breast cancer. Cancer Res. 2021;81:OT-29-01-OT-29-01.
    1. Gounder M.M., Mahoney M.R., Van Tine B.A., Ravi V., Attia S., Deshpande H.A., Gupta A.A., Milhem M.M., Conry R.M., Movva S., et al. Sorafenib for Advanced and Refractory Desmoid Tumors. N. Engl. J. Med. 2018;379:2417–2428. doi: 10.1056/NEJMoa1805052.
    1. Toulmonde M., Pulido M., Ray-Coquard I., Andre T., Isambert N., Chevreau C., Penel N., Bompas E., Saada E., Bertucci F., et al. Pazopanib or methotrexate-vinblastine combination chemotherapy in adult patients with progressive desmoid tumours (DESMOPAZ): A non-comparative, randomised, open-label, multicentre, phase 2 study. Lancet Oncol. 2019;20:1263–1272. doi: 10.1016/S1470-2045(19)30276-1.
    1. Iterion Therapeutics Initiates Enrollment of Phase 2a Dose Expansion Study of Tegavivint in Patients with Desmoid Tumors. [(accessed on 1 September 2021)]. Available online: .
    1. Ayala Pharmaceuticals to Accelerate Development of AL102 for the Treatment of Desmoid Tumors in Pivotal Phase 2/3 Study. [(accessed on 1 September 2021)]. Available online: .

Source: PubMed

3
S'abonner