Lactobacillus rhamnosus GG Activation of Dendritic Cells and Neutrophils Depends on the Dose and Time of Exposure

Shirong Cai, Matheswaran Kandasamy, Juwita N Rahmat, Sin Mun Tham, Boon Huat Bay, Yuan Kun Lee, Ratha Mahendran, Shirong Cai, Matheswaran Kandasamy, Juwita N Rahmat, Sin Mun Tham, Boon Huat Bay, Yuan Kun Lee, Ratha Mahendran

Abstract

This study evaluates the ability of Lactobacillus rhamnosus GG (LGG) to activate DC and neutrophils and modulate T cell activation and the impact of bacterial dose on these responses. Murine bone marrow derived DC or neutrophils were stimulated with LGG at ratios of 5 : 1, 10 : 1, and 100 : 1 (LGG : cells) and DC maturation (CD40, CD80, CD86, CD83, and MHC class II) and cytokine production (IL-10, TNF-α, and IL-12p70) were examined after 2 h and 18 h coculture and compared to the ability of BCG (the present immunotherapeutic agent for bladder cancer) to stimulate these cells. A 2 h exposure to 100 : 1 (high dose) or an 18 h exposure to 5 : 1 or 10 : 1 (low dose), LGG : cells, induced the highest production of IL-12 and upregulation of CD40, CD80, CD86, and MHC II on DC. In DCs stimulated with LGG activated neutrophils IL-12 production decreased with increasing dose. LGG induced 10-fold greater IL-12 production than BCG. T cell IFNγ and IL-2 production was significantly greater when stimulated with DC activated with low dose LGG. In conclusion, DC or DC activated with neutrophils exposed to low dose LGG induced greater Th1 polarization in T cells and this could potentially exert stronger antitumor effects. Thus the dose of LGG used for immunotherapy could determine treatment efficacy.

Figures

Figure 1
Figure 1
LGG and BCG induced dose and time dependent effects on DC cytokine production by direct or indirect stimulation via neutrophils. LGG was assessed at 5 : 1, 10 : 1, and 100 : 1 ratios and BCG at 5 : 1 ratios. (a) Production of IL-10, TNF-α, and IL-12p70 after 18 h of continuous coculture of DCs with LGG/BCG (white bar), 2 h of exposure of DCs (black bar) or neutrophil (striped bar) to LGG/BCG, followed by 18 h of bacteria free incubation and 18 h of DC coculture with neutrophils pretreated with LGG/BGC for 2 h (crisscross bar). “” indicates a significant difference (p < 0.05) compared to low dose (5 : 1). For BCG “” indicates a significant difference from neutrophils and for TNF-α significance with respect to DC. Data are presented as the mean ± SEM. (b) Neutrophils were prestimulated with low (5 : 1) and high (100 : 1) dose of LGG for 2 h before they were cocultured with DC for 18 h in the presence and absence of a COX-2 inhibitor, NS398 (crisscross bar); COX-2 inhibitor solvent control (black bar); IL-10 neutralizing antibody (IL-10 Ab) (striped bar); and the isotype control for the antibody (double striped bar). The impact on PGE2, IL-10, and IL-12p70 secretion is shown. “†” indicates a significant difference from the respective controls (p < 0.05). Data are presented as the mean ± SEM.
Figure 2
Figure 2
T cell activation is dependent on the dose of LGG used to stimulate DC or neutrophils. IFNγ (a) and IL-2 (b) production by T cells after 5 days of coculture with DC, neutrophil, or DC-neutrophil (stimulated with low or high dose of LGG for 2 h and then DC for 18 h). Data are presented as the mean ± SEM. “” indicates a significant difference compared to their respective no LGG controls (p < 0.05). “#” indicates significant difference between high and low dose of LGG treatment (p < 0.05).

References

    1. Pessi T., Sütas Y., Hurme M., Isolauri E. Interleukin-10 generation in atopic children following oral lactobacillus rhamnosus GG. Clinical and Experimental Allergy. 2000;30(12):1804–1808. doi: 10.1046/j.1365-2222.2000.00948.x.
    1. Sawada J., Morita H., Tanaka A., Salminen S., He F., Matsuda H. Ingestion of heat-treated Lactobacillus rhamnosus GG prevents development of atopic dermatitis in NC/Nga mice. Clinical and Experimental Allergy. 2007;37(2):296–303. doi: 10.1111/j.1365-2222.2006.02645.x.
    1. Zuccotti G., Meneghin F., Aceti A., et al. Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy. 2015;70(11):1356–1371. doi: 10.1111/all.12700.
    1. Horvath A., Dziechciarz P., Szajewska H. Meta-analysis: Lactobacillus rhamnosus GG for abdominal pain-related functional gastrointestinal disorders in childhood. Alimentary Pharmacology & Therapeutics. 2011;33(12):1302–1310. doi: 10.1111/j.1365-2036.2011.04665.x.
    1. Ohashi Y., Nakai S., Tsukamoto T., et al. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urologia Internationalis. 2002;68(4):273–280. doi: 10.1159/000058450.
    1. Lim B.-K., Mahendran R., Lee Y.-K., Bay B.-H. Chemopreventive effect of Latobacillus rhamnosus on growth of a subcutaneously implanted bladder cancer cell line in the mouse. Japanese Journal of Cancer Research. 2002;93(1):36–41. doi: 10.1111/j.1349-7006.2002.tb01198.x.
    1. Seow S. W., Cai S., Rahmat J. N., et al. Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors. Cancer Science. 2010;101(3):751–758. doi: 10.1111/j.1349-7006.2009.01426.x.
    1. Yuksel Z. S., Buber E., Kocagoz T., Alp A., Saribas Z., Acan N. L. Mycobacterial strains that stimulate the immune system most efficiently as candidates for the treatment of bladder cancer. Journal of Molecular Microbiology and Biotechnology. 2011;20(1):24–28. doi: 10.1159/000324331.
    1. Langenkamp A., Messi M., Lanzavecchia A., Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunology. 2000;1(4):311–316. doi: 10.1038/79758.
    1. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annual Review of Immunology. 1995;13:251–276. doi: 10.1146/annurev.iy.13.040195.001343.
    1. Miyazaki S., Ishikawa F., Fujikawa T., Nagata S., Yamaguchi K. Intraperitoneal injection of lipopolysaccharide induces dynamic migration of Gr-1high polymorphonuclear neutrophils in the murine abdominal cavity. Clinical and Diagnostic Laboratory Immunology. 2004;11(3):452–457. doi: 10.1128/CDLI.11.3.452-457.2004.
    1. Morel C., Badell E., Abadie V., et al. Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induced specific T cell responses in humans and mice. European Journal of Immunology. 2008;38(2):437–447. doi: 10.1002/eji.200737905.
    1. Seow S. W., Rahmat J. N. B., Mohamed A. A. K., Mahendran R., Lee Y. K., Bay B. H. Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium Bovis (bacillus Calmette-Guerin) The Journal of Urology. 2002;168(5):2236–2239. doi: 10.1016/s0022-5347(05)64362-5.
    1. Von Ossowski I., Reunanen J., Satokari R., et al. Mucosal adhesion properties of the probiotic lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and Environmental Microbiology. 2010;76(7):2049–2057. doi: 10.1128/AEM.01958-09.
    1. Rahmat J. N., Esuvaranathan K., Mahendran R. Bacillus Calmette-Guérin induces cellular reactive oxygen species and lipid peroxidation in cancer cells. Urology. 2012;79(6):1411.e15–1411.e20. doi: 10.1016/j.urology.2012.01.017.
    1. Kandasamy M., Bay B.-H., Lee Y.-K., Mahendran R. Lactobacilli secreting a tumor antigen and IL15 activates neutrophils and dendritic cells and generates cytotoxic T lymphocytes against cancer cells. Cellular Immunology. 2011;271(1):89–96. doi: 10.1016/j.cellimm.2011.06.004.
    1. Hedlund S., Persson A., Vujic A., Che K. F., Stendahl O., Larsson M. Dendritic cell activation by sensing Mycobacterium tuberculosis-induced apoptotic neutrophils via DC-SIGN. Human Immunology. 2010;71(6):535–540. doi: 10.1016/j.humimm.2010.02.022.
    1. Lanzinger M., Jürgens B., Hainz U., et al. Ambivalent effects of dendritic cells displaying prostaglandin E2-induced indoleamine 2,3-dioxygenase. European Journal of Immunology. 2012;42(5):1117–1128. doi: 10.1002/eji.201141765.
    1. Shimabukuro-Vornhagen A., Liebig T. M., Koslowsky T., Theurich S., von Bergwelt-Baildon M. S. The ratio between dendritic cells and T cells determines whether prostaglandin E2 has a stimulatory or inhibitory effect. Cellular Immunology. 2013;281(1):62–67. doi: 10.1016/j.cellimm.2013.01.001.
    1. Harizi H., Juzan M., Pitard V., Moreau J.-F., Gualde N. Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. Journal of Immunology. 2002;168(5):2255–2263. doi: 10.4049/jimmunol.168.5.2255.
    1. Baba N., Samson S., Bourdet-Sicard R. L., Rubio M., Sarfati M. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. Journal of Leukocyte Biology. 2008;84(2):468–476. doi: 10.1189/jlb.0108017.
    1. Takahashi T., Kushiro A., Nomoto K., et al. Antitumor effects of the intravesical instillation of heat killed cells of the lactobacillus casei strain shirota on the murine orthotopic bladder tumor MBT-2. Journal of Urology. 2001;166(6):2506–2511. doi: 10.1016/S0022-5347(05)65625-X.
    1. Mohamadzadeh M., Olson S., Kalina W. V., et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(8):2880–2885. doi: 10.1073/pnas.0500098102.
    1. Christensen H. R., Frøkiær H., Pestka J. J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology. 2002;168(1):171–178. doi: 10.4049/jimmunol.168.1.171.
    1. Cai S., Bay B. H., Lee Y. K., Lu J., Mahendran R. Live and lyophilized Lactobacillus species elicit differential immunomodulatory effects on immune cells. FEMS Microbiology Letters. 2010;302(2):189–196. doi: 10.1111/j.1574-6968.2009.01853.x.
    1. Tytgat H. L., van Teijlingen N. H., Sullan R. M., et al. Probiotic gut microbiota isolate interacts with dendritic cells via glycosylated heterotrimeric pili. PLoS One. 2016;11(3, article e0151824) doi: 10.1371/journal.pone.0151824.
    1. Shimosato T., Kitazawa H., Katoh S., et al. Augmentation of TH-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling. Biochemical and Biophysical Research Communications. 2005;326(4):782–787. doi: 10.1016/j.bbrc.2004.11.119.
    1. Ichikawa S., Miyake M., Fujii R., Konishi Y. MyD88 associated ROS generation is crucial for Lactobacillus induced IL-12 production in macrophage. PLoS One. 2012;7(4, article e35880) doi: 10.1371/journal.pone.0035880.
    1. Shida K., Kiyoshima-Shibata J., Nagaoka M., Watanabe K., Nanno M. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. Journal of Dairy Science. 2006;89(9):3306–3317. doi: 10.3168/jds.s0022-0302(06)72367-0.
    1. Abadie V., Badell E., Douillard P., et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood. 2005;106(5):1843–1850. doi: 10.1182/blood-2005-03-1281.
    1. DeCathelineau A. M., Henson P. M. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays in Biochemistry. 2003;39:105–117. doi: 10.1042/bse0390105.
    1. Alfaro C., Suarez N., Oñate C., et al. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS ONE. 2011;6(12) doi: 10.1371/journal.pone.0029300.e29300
    1. Stuart L. M., Lucas M., Simpson C., Lamb J., Savill J., Lacy-Hulbert A. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. Journal of Immunology. 2002;168(4):1627–1635. doi: 10.4049/jimmunol.168.4.1627.
    1. Camporeale A., Boni A., Iezzi G., et al. Critical impact of the kinetics of dendritic cells activation on the in vivo induction of tumor-specific T lymphocytes. Cancer Research. 2003;63(13):3688–3694.
    1. Steinbrink K., Wölfl M., Jonuleit H., Knop J., Enk A. H. Induction of tolerance by IL-10-treated dendritic cells. The Journal of Immunology. 1997;159(10):4772–4780.
    1. Commeren D. L., Van Soest P. L., Karimi K., Löwenberg B., Cornelissen J. J., Braakman E. Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells. Immunology. 2003;110(2):188–196. doi: 10.1046/j.1365-2567.2003.01730.x.
    1. Faulkner L., Buchan G., Baird M. Interleukin-10 does not affect phagocytosis of particulate antigen by bone marrow-derived dendritic cells but does impair antigen presentation. Immunology. 2000;99(4):523–531. doi: 10.1046/j.1365-2567.2000.00018.x.
    1. Chang W. L. W., Baumgarth N., Eberhardt M. K., et al. Exposure of myeloid dendritic cells to exogenous or endogenous IL-10 during maturation determines their longevity. The Journal of Immunology. 2007;178(12):7794–7804. doi: 10.4049/jimmunol.178.12.7794.

Source: PubMed

3
S'abonner