Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases

Alejandra de Moreno de Leblanc, Silvina Del Carmen, Meritxell Zurita-Turk, Clarissa Santos Rocha, Maarten van de Guchte, Vasco Azevedo, Anderson Miyoshi, Jean Guy Leblanc, Alejandra de Moreno de Leblanc, Silvina Del Carmen, Meritxell Zurita-Turk, Clarissa Santos Rocha, Maarten van de Guchte, Vasco Azevedo, Anderson Miyoshi, Jean Guy Leblanc

Abstract

Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of one of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of gastrointestinal inflammatory disease through their immune-modulating properties. A special emphasis will be placed on the critical role of the anti-inflammatory cytokine IL-10, and a brief overview of the uses of genetically engineered LAB that produce this important immune response mediator will also be discussed. Thus, this paper will demonstrate the critical role that IL-10 plays in gastrointestinal inflammatory diseases and how probiotics could be used in their treatment.

References

    1. Nouaille S, Ribeiro LA, Miyoshi A, et al. Heterologous protein production and delivery systems for Lactococcus lactis. Genetics and Molecular Research. 2003;2(1):102–111.
    1. Azevedo V, Miyoshi A. Novas utilizações biotecnológicas e terapêuticas das bactérias do ácido láctico. 2004.
    1. Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium lactococcus lactis ssp. lactis IL1403. Genome Research. 2001;11(5):731–753.
    1. Pfeiler EA, Klaenhammer TR. The genomics of lactic acid bacteria. Trends in Microbiology. 2007;15(12):546–553.
    1. LeBlanc JG, de Moreno de LeBlanc A, Perdigón G, et al. Anti-inflammatory properties of lactic acid bacteria: current knowledge, applications and prospects. Anti-Infective Agents in Medicinal Chemistry. 2008;7(3):148–154.
    1. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek. 2002;82(1-4):279–289.
    1. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. pp. 2001.
    1. Maldonado Galdeano C, de Moreno de LeBlanc A, Vinderola G, Bibas Bonet ME, Perdigón G. Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clinical and Vaccine Immunology. 2007;14(5):485–492.
    1. Miyoshi A, Bermudez-Humaran L, Pacheco de Azevedo M, Langella P, Azevedo V. Lactic acid bacteria as live vectors: heterologous protein production and delivery systems. In: Mozzi F, Raya R, Vignolo G, editors. Biotechnology of Lactic Acid Bacteria Novel Applications. Ames, Iowa, USA: Blackwell Publishing; 2010. p. 9.
    1. Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RWF. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Molecular Microbiology. 1993;8(6):1155–1162.
    1. Norton PM, Le Page RWF, Wells JM. Progress in the development of Lactococcus lactis as a recombinant mucosal vaccine delivery system. Folia Microbiologica. 1995;40(3):225–230.
    1. Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Applied and Environmental Microbiology. 2001;67(9):4119–4127.
    1. Innocentin S, Guimarães V, Miyoshi A, et al. Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Applied and Environmental Microbiology. 2009;75(14):4870–4878.
    1. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy—review of a new approach. Pharmacological Reviews. 2003;55(2):241–269.
    1. Lalani I, Bhol K, Ahmed AR. Interleukin-10: biology, role in inflammation and autoimmunity. Annals of Allergy, Asthma and Immunology. 1997;79(6):469–484.
    1. Howard M, O’Garra A. Biological properties of interleukin 10. Immunology Today. 1992;13(6):198–200.
    1. Opal SM, Wherry JC, Grint P. Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clinical Infectious Diseases. 1998;27(6):1497–1507.
    1. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology. 2001;19:683–765.
    1. Kamanaka M, Kim ST, Wan YY, et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity. 2006;25(6):941–952.
    1. Williams LM, Ricchetti G, Sarma U, Smallie T, Foxwell BMJ. Interleukin-10 suppression of myeloid cell activation—a continuing puzzle. Immunology. 2004;113(3):281–292.
    1. Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M. The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine and Growth Factor Reviews. 2004;15(1):61–76.
    1. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. Journal of Immunology. 2008;180(9):5771–5777.
    1. Del Prete G, de Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. Journal of Immunology. 1993;150(2):353–360.
    1. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. Journal of Experimental Medicine. 1991;174(5):1209–1220.
    1. Allavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. European Journal of Immunology. 1998;28(1):359–369.
    1. Morel AS, Quaratino S, Douek DC, Londei M. Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells: definition of a maturative step. European Journal of Immunology. 1997;27(1):26–34.
    1. Demangel C, Bertolino P, Britton WJ. Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. European Journal of Immunology. 2002;32(4):994–1002.
    1. Wang J, Guan E, Roderiquez G, Norcross MA. Inhibition of CCR5 expression by IL-12 through induction of β- chemokines in human T lymphocytes. Journal of Immunology. 1999;163(11):5763–5769.
    1. Flo TH, Halaas O, Torp S, et al. Differential expression of Toll-like receptor 2 in human cells. Journal of Leukocyte Biology. 2001;69(3):474–481.
    1. Vabulas RM, Braedel S, Hilf N, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. Journal of Biological Chemistry. 2002;277(23):20847–20853.
    1. Shibata Y, Foster LA, Kurimoto M, et al. Immunoregulatory roles of IL-10 in innate immunity: IL-10 inhibits macrophage production of IFN-γ-inducing factors but enhances NK cell production of IFN-γ . Journal of Immunology. 1998;161(8):4283–4288.
    1. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunological Reviews. 2008;226(1):205–218.
    1. Weiner HL, Gonnella PA, Slavin A, Maron R. Oral tolerance: cytokine milieu in the gut and modulation of tolerance by cytokines. Research in Immunology. 1997;148(8-9):528–533.
    1. O’Sullivan DJ. Screening of intestinal microflora for effective probiotic bacteria. Journal of Agricultural and Food Chemistry. 2001;49(4):1751–1760.
    1. Ruddy MJ, Wong GC, Liu XK, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. Journal of Biological Chemistry. 2004;279(4):2559–2567.
    1. Leon F, Smythies LE, Smith PD, Kelsall BL. Involvement of dendritic cells in the pathogenesis of inflammatory bowel disease. Advances in Experimental Medicine and Biology. 2006;579:117–132.
    1. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-β-mediated oral tolerance. Journal of Experimental Medicine. 1996;183(6):2605–2616.
    1. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. Journal of Experimental Medicine. 2001;193(11):1285–1294.
    1. Cong Y, Weaver CT, Lazenby A, Elson CO. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. Journal of Immunology. 2002;169(11):6112–6119.
    1. Podolsky DK. Inflammatory bowel disease. New England Journal of Medicine. 2002;347(6):417–429.
    1. Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut. 2009;58(8):1152–1167.
    1. Kappeler A, Mueller C. The role of activated cytotoxic T cells in inflammatory bowel disease. Histology and Histopathology. 2000;15(1):167–172.
    1. Perdigon G, Medina M, Vintini E, Valdez JC. Intestinal pathway of internalisation of lactic acid bacteria and gut mucosal immunostimulation. International Journal of Immunopathology and Pharmacology. 2000;13(3):141–150.
    1. Pessi T, Sütas Y, Hurme M, Isolauri E. Interleukin-10 generation in atopic children following oral lactobacillus rhamnosus GG. Clinical and Experimental Allergy. 2000;30(12):1804–1808.
    1. Gupta P, Andrew H, Kirschner BS, Guandalini S. Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. Journal of Pediatric Gastroenterology and Nutrition. 2000;31(4):453–457.
    1. de Moreno de LeBlanc A, Chaves S, Perdigón G. Effect of yoghurt on the cytokine profile using a murine model of intestinal inflammation. European Journal of Inflammation. 2009;7(2):97–109.
    1. Galdeano CM, de Moreno de LeBlanc A, Carmuega E, Weill R, Perdigón G. Mechanisms involved in the immunostimulation by probiotic fermented milk. Journal of Dairy Research. 2009;76(4):446–454.
    1. Vizoso Pinto MG, Rodriguez Gómez M, Seifert S, Watzl B, Holzapfel WH, Franz CMAP. Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. International Journal of Food Microbiology. 2009;133(1-2):86–93.
    1. Ishihara S, Rumi MAK, Ortega-Cava CF, et al. Therapeutic targeting of toll-like receptors in gastrointestinal inflammation. Current Pharmaceutical Design. 2006;12(32):4215–4228.
    1. Pimentel-Nunes P, Soares JB, Roncon-Albuquerque R, Dinis-Ribeiro M, Leite-Moreira AF. Toll-like receptors as therapeutic targets in gastrointestinal diseases. Expert Opinion on Therapeutic Targets. 2010;14(4):347–368.
    1. Schultz M, Lindström AL. Rationale for probiotic treatment strategies in inflammatory bowel disease. Expert Review of Gastroenterology and Hepatology. 2008;2(3):337–355.
    1. Fukata M, Abreu MT. TLR4 signalling in the intestine in health and disease. Biochemical Society Transactions. 2007;35(6):1473–1478.
    1. Dogi CA, Galdeano CM, Perdigón G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria. Comparison with a probiotic strain. Cytokine. 2008;41(3):223–231.
    1. Chung YW, Choi JH, Oh TY, Eun CS, Han DS. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. Clinical and Experimental Immunology. 2008;151(1):182–189.
    1. Rachmilewitz D, Karmeli F, Takabayashi K, et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology. 2002;122(5):1428–1441.
    1. Obermeier F, Dunger N, Strauch UG, et al. CpG motifs of bacterial DNA essentially contribute to the perpetuation of chronic intestinal inflammation. Gastroenterology. 2005;129(3):913–927.
    1. Akhtar M, Watson JL, Nazli A, McKay DM. Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-kappaB-independent pathway. The FASEB Journal. 2003;17(10):1319–1321.
    1. Lee J, Rachmilewitz D, Raz E. Homeostatic effects of TLR9 signaling in experimental colitis. Annals of the New York Academy of Sciences. 2006;1072:351–355.
    1. Rachmilewitz D, Katakura K, Karmeli F, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology. 2004;126(2):520–528.
    1. Rachmilewitz D, Karmeli F, Shteingart S, Lee J, Takabayashi K, Raz E. Immunostimulatory oligonucleotides inhibit colonic proinflammatory cytokine production in ulcerative colitis. Inflammatory Bowel Diseases. 2006;12(5):339–345.
    1. Kamada N, Inoue N, Hisamatsu T, et al. Nonpathogenic Escherichia coli strain Nissle 1917 prevents murine acute and chronic colitis. Inflammatory Bowel Diseases. 2005;11(5):455–463.
    1. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–274.
    1. Tilg H, Van Montfrans C, Van den Ende A, et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon γ . Gut. 2002;50(2):191–195.
    1. Uhlig HH, Coombes J, Mottet C, et al. Characterization of Foxp3+ CD4+ CD25+ and IL-10-secreting CD4+ CD25+ T cells during cure of colitis. Journal of Immunology. 2006;177(9):5852–5860.
    1. Cui HH, Chen CL, Wang JID, et al. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World Journal of Gastroenterology. 2004;10(10):1521–1525.
    1. Calcinaro F, Dionisi S, Marinaro M, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48(8):1565–1575.
    1. Mastrangeli G, Corinti S, Butteroni C, et al. Effects of live and inactivated VSL#3 probiotic preparations in the modulation of in vitro and in vivo allergen-induced Th2 responses. International Archives of Allergy and Immunology. 2009;150(2):133–143.
    1. Di Giacinto C, Marinaro M, Sanchez M, Strober W, Boirivant M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. Journal of Immunology. 2005;174(6):3237–3246.
    1. Lavasani S, Dzhambazov B, Nouri M, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE. 2010;5(2) Article ID e9009.
    1. de Moreno de LeBlanc A, Perdigón G. The application of probiotic fermented milks in cancer and intestinal inflammation. Proceedings of the Nutrition Society. 2010;69:421–428.
    1. Jung BG, Cho SJ, Koh HB, Han DU, Lee BJ. Fermented Maesil (Prunus mume) with probiotics inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Veterinary Dermatology. 2010;21(2):184–191.
    1. D'Incà R, Barollo M, Scarpa M, et al. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-Like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Digestive Diseases and Sciences. In press.
    1. Villena J, Barbieri N, Salva S, Herrera M, Alvarez S. Enhanced immune response to pneumococcal infection in malnourished mice nasally treated with heat-killed Lactobacillus casei. Microbiology and Immunology. 2009;53(11):636–646.
    1. Li N, Russell WM, Douglas-Escobar M, Hauser N, Lopez M, Neu J. Live and heat-killed lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatric Research. 2009;66(2):203–207.
    1. Foligne B, Nutten S, Grangette C, et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World Journal of Gastroenterology. 2007;13(2):236–243.
    1. dos Santos LM, Santos MM, de Souza Silva HP, Arantes RME, Nicoli JR, Vieira LQ. Monoassociation with probiotic Lactobacillus delbrueckii UFV-H2b20 stimulates the immune system and protects germfree mice against Listeria monocytogenes infection. Medical Microbiology and Immunology. 2011;200(1):29–38.
    1. Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe. 2010;16(3):195–200.
    1. Generoso SV, Viana M, Santos R, et al. Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model. Archives of Microbiology. 2010;192(6):477–484.
    1. Grangette C, Nutten S, Palumbo E, et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(29):10321–10326.
    1. Marinho FAV, Pacífico LGG, Miyoshi A, et al. An intranasal administration of Lactococcus lactis strains expressing recombinant interleukin-10 modulates acute allergic airway inflammation in a murine model. Clinical and Experimental Allergy. 2010;40(10):1541–1551.
    1. Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352–1355.
    1. Roselli M, Finamore A, Nuccitelli S, et al. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of γδT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflammatory Bowel Diseases. 2009;15(10):1526–1536.
    1. Mengheri E. Health, probiotics, and inflammation. Journal of clinical gastroenterology. 2008;42:S177–178.
    1. Sybesma W, Hugenholtz J, de Vos WM, Smid EJ. Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. Electronic Journal of Biotechnology. 2006;9(4):1–25.
    1. Schotte L, Steidler L, Vandekerckhove J, Remaut E. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme and Microbial Technology. 2000;27(10):761–765.
    1. Tournoy KG, Kips JC, Pauwels RA. Endogenous interleukin-10 suppresses allergen-induced airway inflammation and nonspecific airway responsiveness. Clinical and Experimental Allergy. 2000;30(6):775–783.
    1. Frossard CP, Steidler L, Eigenmann PA. Oral administration of an IL-10-secreting Lactococcus lactis strain prevents food-induced IgE sensitization. Journal of Allergy and Clinical Immunology. 2007;119(4):952–959.
    1. Waeytens A, Ferdinande L, Neirynck S, et al. Paracellular entry of interleukin-10 producing Lactococcus lactis in inflamed intestinal mucosa in mice. Inflammatory Bowel Diseases. 2008;14(4):471–479.
    1. Loos M, Remaut E, Rottiers P, de Creus A. Genetically engineered Lactococcus lactis secreting murine IL-10 modulates the functions of bone marrow-derived dendritic cells in the presence of LPS. Scandinavian Journal of Immunology. 2009;69(2):130–139.
    1. Steidler L, Neirynck S, Huyghebaert N, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotechnology. 2003;21(7):785–789.
    1. Braat H, Rottiers P, Hommes DW, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clinical Gastroenterology and Hepatology. 2006;4(6):754–759.
    1. Termont S, Vandenbroucke K, Iserentant D, et al. Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance. Applied and Environmental Microbiology. 2006;72(12):7694–7700.
    1. Huyghebaert N, Vermeire AN, Neirynck S, Steidler L, Remaut E, Remon JP. Development of an enteric-coated formulation containing freeze-dried, viable recombinant Lactococcus lactis for the ileal mucosal delivery of human interleukin-10. European Journal of Pharmaceutics and Biopharmaceutics. 2005;60(3):349–359.
    1. Huyghebaert N, Vermeire AN, Neirynck S, Steidler L, Remaut E, Remon JP. Evaluation of extrusion/spheronisation, layering and compaction for the preparation of an oral, multi-particulate formulation of viable, hIL-10 producing Lactococcus lactis. European Journal of Pharmaceutics and Biopharmaceutics. 2005;59(1):9–15.
    1. del Carmen S, de Moreno de LeBlanc A, Miyoshi A, Santos Rochat C, Azevedo V, LeBlanc JG. Application of probiotics in the prevention and treatment of ulcerative colitis and other inflammatory bowel diseases. Ulcers. 2011;2011:13 pages. Article ID 841651.
    1. LeBlanc JG, del Carmen S, Miyoshi A, et al. Use of superoxide dismutase and catalase expressing lactic acid bacteria to attenuate TNBS induced Crohn’s disease in mice. Journal of Biotechnology. 2011;151(3):287–293.
    1. LeBlanc JG, van Sinderen D, Hugenholtz J, Piard J-C, Sesma F, Savoy de Giori G. Risk assessment of genetically modified lactic acid bacteria using the concept of substantial equivalence. Current Microbiology. 2010;61(6):590–595.

Source: PubMed

3
S'abonner