End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study

Delphine Georges, Hugues de Courson, Romain Lanchon, Musa Sesay, Karine Nouette-Gaulain, Matthieu Biais, Delphine Georges, Hugues de Courson, Romain Lanchon, Musa Sesay, Karine Nouette-Gaulain, Matthieu Biais

Abstract

Background: In mechanically ventilated patients, an increase in cardiac index during an end-expiratory-occlusion test predicts fluid responsiveness. To identify this rapid increase in cardiac index, continuous and instantaneous cardiac index monitoring is necessary, decreasing its feasibility at the bedside. Our study was designed to investigate whether changes in velocity time integral and in peak velocity obtained using transthoracic echocardiography during an end-expiratory-occlusion maneuver could predict fluid responsiveness.

Methods: This single-center, prospective study included 50 mechanically ventilated critically ill patients. Velocity time integral and peak velocity were assessed using transthoracic echocardiography before and at the end of a 12-sec end-expiratory-occlusion maneuver. A third set of measurements was performed after volume expansion (500 mL of saline 0.9% given over 15 minutes). Patients were considered as responders if cardiac output increased by 15% or more after volume expansion.

Results: Twenty-eight patients were responders. At baseline, heart rate, mean arterial pressure, cardiac output, velocity time integral and peak velocity were similar between responders and non-responders. End-expiratory-occlusion maneuver induced a significant increase in velocity time integral both in responders and non-responders, and a significant increase in peak velocity only in responders. A 9% increase in velocity time integral induced by the end-expiratory-occlusion maneuver predicted fluid responsiveness with sensitivity of 89% (95% CI 72% to 98%) and specificity of 95% (95% CI 77% to 100%). An 8.5% increase in peak velocity induced by the end-expiratory-occlusion maneuver predicted fluid responsiveness with sensitivity of 64% (95% CI 44% to 81%) and specificity of 77% (95% CI 55% to 92%). The area under the receiver operating curve generated for changes in velocity time integral was significantly higher than the one generated for changes in peak velocity (0.96 ± 0.03 versus 0.70 ± 0.07, respectively, P = 0.0004 for both). The gray zone ranged between 6 and 10% (20% of the patients) for changes in velocity time integral and between 1 and 13% (62% of the patients) for changes in peak velocity.

Conclusions: In mechanically ventilated and sedated patients in the neuro Intensive Care Unit, changes in velocity time integral during a 12-sec end-expiratory-occlusion maneuver were able to predict fluid responsiveness and perform better than changes in peak velocity.

Keywords: Echocardiography; End-expiratory occlusion; Fluid responsiveness; Heart-lung interactions; Volume expansion.

Conflict of interest statement

Ethics approval and consent to participate

The present study was approved by the Institutional Review Board (Comité de Protection des Personnes Sud-Ouest et Outre Mer III, Bordeaux, France number DC2016/14).

Consent for publication

The manuscript has been read and its submission approved by all co-authors. Patients were prospectively included after informed consent from the patient’s next of kin.

Competing interests

MB received honoraria from Edwards Lifesciences and Pulsion Medical System as a lecturer. The other authors have no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Individual values in responders (n = 28) and non-responders (n = 22) of the variations in velocity time integral (%) and peak velocity of aortic blood flow (%) during a 12-sec end-expiratory occlusion maneuver. ∆VTI-EEO, changes in velocity time integral (%) induced by end-expiratory occlusion. ∆Vmax-EEO, changes in peak velocity induced by end-expiratory occlusion. Responders, change in cardiac output ≥15% after volume expansion; non-responders, change in cardiac output <15% after volume expansion. Volume expansion, 500 mL saline 0.9% given over 15 minutes
Fig. 2
Fig. 2
Receiver operating characteristics curves evaluating the ability of the variations in velocity time integral (%) and peak velocity of aortic blood flow (%) during a 12-sec end-expiratory occlusion maneuver to predict fluid responsiveness. ∆VTI-EEO, changes in velocity time integral (%) induced by end-expiratory occlusion. ∆Vmax, changes in peak velocity induced by end-expiratory occlusion. Responders, change in cardiac output ≥15% after volume expansion; non-responders, change in cardiac output

Fig. 3

Gray zone of the variations…

Fig. 3

Gray zone of the variations in velocity time integral (%) and peak velocity…

Fig. 3
Gray zone of the variations in velocity time integral (%) and peak velocity of aortic blood flow (%) induced by a 12-sec end-expiratory occlusion maneuver to predict fluid responsiveness. The blue curve indicates sensitivity, and the red curve indicates specificity. ∆VTI-EEO, changes in velocity time integral (%) induced by end-expiratory occlusion test. ∆Vmax, changes in peak velocity induced by end-expiratory occlusion. Responders, change in cardiac output ≥15% after volume expansion; non-responders, change in cardiac output
Similar articles
Cited by
References
    1. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65. doi: 10.1097/CCM.0b013e3181feeb15. - DOI - PubMed
    1. Cecconi M, Hofer C, Teboul J-L, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37. doi: 10.1007/s00134-015-3850-x. - DOI - PMC - PubMed
    1. Boulain T, Boisrame-Helms J, Ehrmann S, Lascarrou J-B, Bouglé A, Chiche A, et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med. 2015;41:248–56. doi: 10.1007/s00134-014-3576-1. - DOI - PubMed
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7. doi: 10.1097/CCM.0b013e3181a590da. - DOI - PubMed
    1. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2014;112:681–5. doi: 10.1093/bja/aet442. - DOI - PubMed
Show all 24 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 3
Fig. 3
Gray zone of the variations in velocity time integral (%) and peak velocity of aortic blood flow (%) induced by a 12-sec end-expiratory occlusion maneuver to predict fluid responsiveness. The blue curve indicates sensitivity, and the red curve indicates specificity. ∆VTI-EEO, changes in velocity time integral (%) induced by end-expiratory occlusion test. ∆Vmax, changes in peak velocity induced by end-expiratory occlusion. Responders, change in cardiac output ≥15% after volume expansion; non-responders, change in cardiac output

References

    1. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65. doi: 10.1097/CCM.0b013e3181feeb15.
    1. Cecconi M, Hofer C, Teboul J-L, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37. doi: 10.1007/s00134-015-3850-x.
    1. Boulain T, Boisrame-Helms J, Ehrmann S, Lascarrou J-B, Bouglé A, Chiche A, et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med. 2015;41:248–56. doi: 10.1007/s00134-014-3576-1.
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7. doi: 10.1097/CCM.0b013e3181a590da.
    1. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2014;112:681–5. doi: 10.1093/bja/aet442.
    1. Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care Lond Engl. 2014;18:587. doi: 10.1186/s13054-014-0587-9.
    1. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul J-L. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–21. doi: 10.1097/CCM.0000000000002183.
    1. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul J-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6. doi: 10.1097/CCM.0b013e3181968fe1.
    1. Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–7. doi: 10.1097/ALN.0000000000001459.
    1. Vieillard-Baron A, Mayo PH, Vignon P, Cholley B, Slama M, Pinsky MR, et al. Expert Round Table on Echocardiography in ICU. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med. 2014;40:654–66.
    1. Wetterslev M, Møller-Sørensen H, Johansen RR, Perner A. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. 2016;42:1223–33. doi: 10.1007/s00134-016-4258-y.
    1. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul J-L. Precision of the transpulmonary thermodilution measurements. Crit Care Lond Engl. 2011;15:R204. doi: 10.1186/cc10421.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8. doi: 10.1164/ajrccm.162.1.9903035.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45. doi: 10.2307/2531595.
    1. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–40. doi: 10.1097/ALN.0b013e3181d47604.
    1. Monnet X, Bleibtreu A, Ferré A, Dres M, Gharbi R, Richard C, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40:152–7. doi: 10.1097/CCM.0b013e31822f08d7.
    1. Jozwiak M, Depret F, Teboul J-L, Alphonsine J-E, Lai C, Richard C, et al. Predicting fluid responsiveness in critically ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45:e1131–8. doi: 10.1097/CCM.0000000000002704.
    1. Slama M, Masson H, Teboul J-L, Arnout M-L, Susic D, Frohlich E, et al. Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol. 2002;283:H1729–33. doi: 10.1152/ajpheart.00308.2002.
    1. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul J-L. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32. doi: 10.1007/s00134-007-0646-7.
    1. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73. doi: 10.1378/chest.119.3.867.
    1. Jozwiak M, Monnet X, Cinotti R, Bontemps F, Reignier J, Belliard G. Prospective assessment of a score for assessing basic critical-care transthoracic echocardiography skills in ventilated critically ill patients. Ann Intensive Care. 2014;4:12. doi: 10.1186/2110-5820-4-12.
    1. Biais M, Cottenceau V, Stecken L, Jean M, Ottolenghi L, Roullet S, et al. Evaluation of stroke volume variations obtained with the pressure recording analytic method. Crit Care Med. 2012;40:1186–91. doi: 10.1097/CCM.0b013e31823bc632.
    1. Muller L, Toumi M, Bousquet P-J, Riu-Poulenc B, Louart G, Candela D, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–7. doi: 10.1097/ALN.0b013e318229a500.
    1. Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg. 2017;125:1889–95.

Source: PubMed

3
S'abonner