Characterization of MK₈(H₂) from Rhodococcus sp. B7740 and Its Potential Antiglycation Capacity Measurements

Yashu Chen, Qin Mu, Kai Hu, Mo Chen, Jifang Yang, Jigang Chen, Bijun Xie, Zhida Sun, Yashu Chen, Qin Mu, Kai Hu, Mo Chen, Jifang Yang, Jigang Chen, Bijun Xie, Zhida Sun

Abstract

Menaquinone (MK) has an important role in human metabolism as an essential vitamin (VK₂), which is mainly produced through the fermentation of microorganisms. MK₈(H₂) was identified to be the main menaquinone from Rhodococcus sp. B7740, a bacterium isolated from the arctic ocean. In this work, MK₈(H₂) (purity: 99.75%) was collected through a convenient and economic extraction process followed by high-speed countercurrent chromatography (HSCCC) purification. Additionally, high-resolution mass spectrometry (HRMS) was performed for further identification and the hydrogenation position of MK₈(H₂) (terminal unit) was determined using nuclear magnetic resonance (NMR) for the first time. MK₈(H₂) showed a superior antioxidant effect and antiglycation capacity compared with ubiquinone Q10 and MK₄. High-performance liquid chromatography⁻mass spectrometer (HPLC-MS/MS) and molecular docking showed the fine interaction between MK₈(H₂) with methylglyoxal (MGO) and bull serum albumin (BSA), respectively. These properties make MK₈(H₂) a promising natural active ingredient with future food and medicine applications.

Keywords: MK8(H2); NMR; Rhodococcus sp. B7740 from Arctic ocean; UPLC-HRMS; antioxidant and antiglycation; isoprenoid quinone.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Molecular structure of menaquinone (MK) and ubiquinone (UQ): (A) HPLC spectrum of isoprenoid quinones from Rhodococcus sp. B7740; (B) MS/MS; (C) diode array detector (DAD); (D) spectrum of MK8(H2).
Figure 2
Figure 2
High-resolution mass spectrometry (HRMS) image of: (A) MK8(H2) ((MK8(H2) + Na+) ion); (B) molecule structure of MK8(H2).
Figure 2
Figure 2
High-resolution mass spectrometry (HRMS) image of: (A) MK8(H2) ((MK8(H2) + Na+) ion); (B) molecule structure of MK8(H2).
Figure 3
Figure 3
The HPLC spectrum of MGO (A) before and (C) after incubation. The HPLC spectrum of MK8(H2) (B) before and (D) after incubation. (E) MS and (F) MS/MS spectrum of MK8(H2)–MGO adduct.
Figure 4
Figure 4
(A)Main interaction of MK8(H2) binding to the BSA at site I; (B) Molecular contacts between MK8(H2) and amino acids of BSA at site I; (C) Main interaction of MK8(H2) binding to the BSA at site II; (D) Molecular contacts between MK8(H2) and amino acids of BSA at site II.
Figure 4
Figure 4
(A)Main interaction of MK8(H2) binding to the BSA at site I; (B) Molecular contacts between MK8(H2) and amino acids of BSA at site I; (C) Main interaction of MK8(H2) binding to the BSA at site II; (D) Molecular contacts between MK8(H2) and amino acids of BSA at site II.

References

    1. Makoto K. Biosynthesis and applications of prenylquinones. Biosci. Biotechnol. Biochem. 2018;82:963–977.
    1. Suttie J.W. Mechanism of action of vitamin K: Synthesis of gamma-carboxyglutamic acid. Crit. Rev. Biochem. 1980;8:191–233. doi: 10.3109/10409238009105469.
    1. Tsaioun K.I. Vitamin K-dependent Proteins in the Developing and Aging Nervous System. Nutr. Rev. 1999;57:231–240. doi: 10.1111/j.1753-4887.1999.tb06950.x.
    1. Littarru G.P., Tiano L. Clinical aspects of coenzyme Q10: An update. Nutrition. 2010;26:250–254. doi: 10.1016/j.nut.2009.08.008.
    1. Kurosu M., Begari E. Vitamin K2 in electron transport system: Are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules. 2010;15:1531–1553. doi: 10.3390/molecules15031531.
    1. Tsukamoto Y., Ichise H., Kakuda H., Yamaguchi M. Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) J. Bone Miner. Metab. 2000;18:216–222. doi: 10.1007/s007740070023.
    1. Yamaguchi M., Taguchi H., Gao Y.H., Igarashi A., Tsukamoto Y. Effect of vitamin K2 (menaquinone-7) in fermented soybean (natto) on bone loss in ovariectomized. J. Am. Soc. Hypertens. 1999;17:23–29.
    1. Mandatori D., Penolazzi L., Pipino C., Di Tomo P., Di Silvestre S., Di Pietro N., Trevisani S., Angelozzi M., Ucci M., Piva R., et al. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems. J. Tissue Eng. Regen. Med. 2018;12:447–459. doi: 10.1002/term.2471.
    1. McFarlin B.K., Henning A.L., Venable A.S. Oral Consumption of Vitamin K2 for 8 Weeks Associated with Increased Maximal Cardiac Output During Exercise. Altern. Ther. Health Med. 2017;23:26–32.
    1. Mansour A.G., Hariri E., Daaboul Y., Korjian S., El Alam A., Protogerou A.D., Kilany H., Karam A., Stephan A., Bahous S.A. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients-a single-arm, single-center clinical trial. J. Am. Soc. Hypertens. 2017;11:589–597. doi: 10.1016/j.jash.2017.07.001.
    1. Vossen L.M., Schurgers L.J., van Varik B.J., Kietselaer B.L., Vermeer C., Meeder J.G., Rahel B.M., van Cauteren Y.J., Hoffland G.A., Rennenberg R.J., et al. Menaquinone-7 supplementation to reduce vascular calcification in patients with coronary artery disease: Rationale and study Protocol (VitaK-CAC Trial) Nutrients. 2015;7:8905–8915. doi: 10.3390/nu7115443.
    1. Janssen R., Vermeer C. Vitamin K deficit and elastolysis theory in pulmonary elasto-degenerative diseases. Med. Hypotheses. 2017;108:38–41. doi: 10.1016/j.mehy.2017.07.029.
    1. Noda S., Yamada A., Tanabe R., Nakaoka K., Hosoi T., Goseki-Sone M. Menaquinone-4 (vitamin K2) up-regulates expression of human intestinal alkaline phosphatase in Caco-2 cells. Nutr. Res. 2016;36:1269–1276. doi: 10.1016/j.nutres.2016.10.001.
    1. Sheetal B., Thomas R.C. Vitamin K2 takes charge. Science. 2012;336:1241–1242.
    1. Meganathan R. Biosynthesis of Menaquinone (Vitamin K2) and Ubiquinone (Coenzyme Q): A Perspective on Enzymatic Mechanisms. Vitam. Horm. 2001;61:173–218.
    1. Haruo S.Y.J., Tomoshige H., Miwako F., Kazuo F.N.I., Tohru D. Studies on a New Biosynthetic Pathway for Menaquinone. J. Am. Chem. Soc. 2008;130:5614–5615.
    1. Nowicka B., Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta. 2010;1797:1587–1605. doi: 10.1016/j.bbabio.2010.06.007.
    1. Berenjian A., Mahanama R., Talbot A., Regtop H., Kavanagh J., Dehghani F. Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Appl. Biochem. Biotechnol. 2014;172:1347–1357. doi: 10.1007/s12010-013-0602-7.
    1. Min K.K., Pyung C.L. Metabolic Engineering of Menaquinone-8 Pathway of Escherichia coli as a Microbial Platform for Vitamin K Production. Biotechnol. Bioeng. 2011;108:1997–2002.
    1. Chen Y., Xie B., Yang J., Chen J., Sun Z. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions. Food Chem. 2018;240:204–211. doi: 10.1016/j.foodchem.2017.06.067.
    1. Gast G.C.M., de Roos N.M., Sluijs I., Bots M.L., Beulens J.W., Geleijnse J.M., Witteman J.C., Grobbee D.E., Peeters P.H., van der Schouw Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. 2009;19:504–510. doi: 10.1016/j.numecd.2008.10.004.
    1. Degli E.M. A journey across genomes uncovers the origin of ubiquinone in cyanobacteria. Genome Biol. Evol. 2017;9:3039–3053. doi: 10.1093/gbe/evx225.
    1. Kaiser P., Geyer R., Surmann P., Fuhrmann H. LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones. J. Microbiol. Methods. 2012;88:28–34. doi: 10.1016/j.mimet.2011.10.001.
    1. Wei H., Wang L., Zhao G., Fang Z., Wu H., Wang P., Zheng Z. Extraction, purification and identification of menaquinones from Flavobacterium meningosepticum fermentation medium. Process. Biochem. 2018;66:245–253. doi: 10.1016/j.procbio.2018.01.007.
    1. Mesías M., Navarro M., Martínez-Saez N., Ullate M., del Castillo M.D., Morales F.J. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food. Res. Int. 2014;62:1120–1126. doi: 10.1016/j.foodres.2014.05.058.
    1. Harris C.S., Beaulieu L.P., Fraser M.H., McIntyre K.L., Owen P.L., Martineau L.C. Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity. Planta Med. 2011;77:196–204. doi: 10.1055/s-0030-1250161.
    1. Nattha J., Sirintorn Y., Sirichai A. Inhibition of advanced glycation end products by red grape skin extract and its antioxidant. BMC Complement. Altern. Med. 2013;13:171–179.
    1. Muhammad Z., Shakeel A., Shazia A.B., Ryszard A., Sezai E., Hawa Z.E.J. Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biol. Res. 2014;47:23–37.
    1. Sadowska-Bartosz I., Bartosz G. Prevention of protein glycation by natural compounds. Molecules. 2015;20:3309–3334. doi: 10.3390/molecules20023309.
    1. Okano T., Shimomura Y., Yamane M., Suhara Y., Kamao M., Sugiura M., Nakagawa K. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008;283:11270–11279. doi: 10.1074/jbc.M702971200.
    1. Eugeäne E.N., Sylvain S., Khaled B. Anthocyanins in wild blueberries of Quebec: Extraction and identification. J. Agric. Food Chem. 2007;55:5626–5635.
    1. Wang W., Yagiz Y., Buran T.J., Nunes C.d.N., Gu L. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Res. Int. 2011;44:2666–2673. doi: 10.1016/j.foodres.2011.05.022.
    1. Shen Y., Xu Z., Sheng Z. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chem. 2017;216:153–160. doi: 10.1016/j.foodchem.2016.08.034.
    1. Kiran B.U., Khan B.A.A., Arunachalam J., Anhazhagan V. Spectrofluorimetric and molecular docking investigation on the interaction of 6-azauridine, a pyrimidine nucleoside antimetabolite, with serum protein. J. Mol. Liq. 2016;219:602–607.

Source: PubMed

3
S'abonner