Effect of Vitamin D-Enriched Gouda-Type Cheese Consumption on Biochemical Markers of Bone Metabolism in Postmenopausal Women in Greece

George Moschonis, Ellen Ghm van den Heuvel, Christina Mavrogianni, Yannis Manios, George Moschonis, Ellen Ghm van den Heuvel, Christina Mavrogianni, Yannis Manios

Abstract

Considering the role of bone metabolism in understanding the pathogenesis of osteoporosis, the aim of the present study was to examine the effects of vitamin D-enriched cheese on the serum concentrations of the parathyroid hormone (PTH) and certain bone remodeling biomarkers in postmenopausal women in Greece. In a randomised, controlled dietary intervention, 79 postmenopausal women (55-75 years old) were randomly allocated either to a control (CG: n = 39) or an intervention group (IG: n = 40), consuming 60 g of either non-enriched or vitamin D3-enriched Gouda-type cheese (5.7 μg of vitamin D3), respectively, daily and for eight weeks during the winter. The serum concentrations of 25-hydroxy vitamin D (25(OH)D), PTH, bone formation (i.e., osteocalcin, P1NP) and bone resorption (i.e., TRAP-5b) biomarkers were measured. Consumption of the vitamin D-enriched cheese led to higher serum 25(OH)D concentrations of 23.4 ± 6.39 (p = 0.022) and 13.4 ± 1.35 (p < 0.001) nmol/L in vitamin D-insufficient women being at menopause for less and more than 5 years, respectively. In vitamin D-insufficient women that were less than 5 years at menopause, consumption of vitamin D-enriched cheese was also associated with lower serum PTH (Beta -0.63 ± 1.11; p < 0.001) and TRAP-5b (Beta -0.65 ± 0.23; p = 0.004) levels at follow-up, compared with the CG. The present study showed that daily intake of 5.7 μg of vitamin D through enriched cheese increased serum 25(OH)D concentrations, prevented PTH increase and reduced bone resorption in vitamin D-insufficient early postmenopausal women, thus reflecting a potential food-based solution for reducing the risk of bone loss occurring after menopause.

Keywords: bone remodeling; cheese; enriched dairy; postmenopausal women; vitamin D.

Conflict of interest statement

E.G.v.d.H. was at the time of the study employee at FrieslandCampina. None of the other authors have any potential conflict of interest to declare. Any opinions, findings, conclusions, or recommendations expressed in the current study are those of the authors and do not necessarily reflect the views of FrieslandCampina.

Figures

Figure 1
Figure 1
CONSORT flow diagram of study participants.

References

    1. Ross A.C. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. 2011;14:938–939. doi: 10.1017/S1368980011000565.
    1. Holick M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017;18:153–165. doi: 10.1007/s11154-017-9424-1.
    1. Ebeling P.R. Vitamin D and bone health: Epidemiologic studies. BoneKEy Rep. 2014;3:511. doi: 10.1038/bonekey.2014.6.
    1. Heaney R.P. The bone remodeling transient: Interpreting interventions involving bone-related nutrients. Nutr. Rev. 2001;59:327–334. doi: 10.1111/j.1753-4887.2001.tb06957.x.
    1. Heaney R.P., McCarron D.A., Dawson-Hughes B., Oparil S., Berga S.L., Stern J.S., Barr S.I., Rosen C.J. Dietary changes favorably affect bone remodeling in older adults. J. Am. Diet. Assoc. 1999;99:1228–1233. doi: 10.1016/S0002-8223(99)00302-8.
    1. Nishizawa Y., Ohta H., Miura M., Inaba M., Ichimura S., Shiraki M., Takada J., Chaki O., Hagino H., Fujiwara S., et al. Guidelines for the use of bone metabolic markers in the diagnosis and treatment of osteoporosis (2012 edition) J. Bone Miner. Metab. 2013;31:1–15. doi: 10.1007/s00774-012-0392-y.
    1. Lombardi G., Perego S., Luzi L., Banfi G. A four-season molecule: Osteocalcin. Updates in its physiological roles. Endocrine. 2015;48:394–404. doi: 10.1007/s12020-014-0401-0.
    1. Krege J.H., Lane N.E., Harris J.M., Miller P.D. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos. Int. 2014;25:2159–2171. doi: 10.1007/s00198-014-2646-0.
    1. Cauley J.A. Bone health after menopause. Curr. Opin. Endocrinol. Diabetes Obes. 2015;22:490–494. doi: 10.1097/MED.0000000000000204.
    1. Greendale G.A., Sowers M., Han W., Huang M.H., Finkelstein J.S., Crandall C.J., Lee J.S., Karlamangla A.S. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: Results from the Study of Women’s Health Across the Nation (SWAN) J. Bone Miner. Res. 2012;27:111–118. doi: 10.1002/jbmr.534.
    1. Rizzoli R., Stevenson J.C., Bauer J.M., van Loon L.J., Walrand S., Kanis J.A., Cooper C., Brandi M.L., Diez-Perez A., Reginster J.Y., et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: A consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) Maturitas. 2014;79:122–132. doi: 10.1016/j.maturitas.2014.07.005.
    1. Nieves J.W. Osteoporosis: The role of micronutrients. Am. J. Clin. Nutr. 2005;81:1232S–1239S. doi: 10.1093/ajcn/81.5.1232.
    1. Avenell A., Mak J.C., O’Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014 doi: 10.1002/14651858.CD000227.pub4.
    1. Lips P., Gielen E., van Schoor N.M. Vitamin D supplements with or without calcium to prevent fractures. BoneKEy Rep. 2014;3:512. doi: 10.1038/bonekey.2014.7.
    1. Baeksgaard L., Andersen K.P., Hyldstrup L. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women. Osteoporos. Int. 1998;8:255–260. doi: 10.1007/s001980050062.
    1. Dawson-Hughes B., Dallal G.E., Krall E.A., Sadowski L., Sahyoun N., Tannenbaum S. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N. Engl. J. Med. 1990;323:878–883. doi: 10.1056/NEJM199009273231305.
    1. Reid I.R., Ames R.W., Evans M.C., Gamble G.D., Sharpe S.J. Long-term effects of calcium supplementation on bone loss and fractures in postmenopausal women: A randomized controlled trial. Am. J. Med. 1995;98:331–335. doi: 10.1016/S0002-9343(99)80310-6.
    1. Vieth R., Chan P.C., MacFarlane G.D. Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. Am. J. Clin. Nutr. 2001;73:288–294. doi: 10.1093/ajcn/73.2.288.
    1. Weisman S.M., Matkovic V. Potential use of biochemical markers of bone turnover for assessing the effect of calcium supplementation and predicting fracture risk. Clin. Ther. 2005;27:299–308. doi: 10.1016/j.dinthera.2005.03.003.
    1. Whiting S.J., Kohrt W.M., Warren M.P., Kraenzlin M.I., Bonjour J.P. Food fortification for bone health in adulthood: A scoping review. Eur. J. Clin. Nutr. 2016;70:1099–1105. doi: 10.1038/ejcn.2016.42.
    1. Manios Y., Moschonis G., Mavrogianni C., van den Heuvel E., Singh-Povel C.M., Kiely M., Cashman K.D. Reduced-fat Gouda-type cheese enriched with vitamin D3 effectively prevents vitamin D deficiency during winter months in postmenopausal women in Greece. Eur. J. Nutr. 2017;56:2367–2377. doi: 10.1007/s00394-016-1277-y.
    1. Burild A., Frandsen H.L., Poulsen M., Jakobsen J. Quantification of physiological levels of vitamin D(3) and 25-hydroxyvitamin D(3) in porcine fat and liver in subgram sample sizes. J. Sep. Sci. 2014;37:2659–2663. doi: 10.1002/jssc.201400548.
    1. Ezzati M., Bentham J., Di Cesare M., Bilano V., Bixby H., Zhou B., Stevens G.A., Riley L.M., Taddei C., Hajifathalian K., et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Cashman K.D., Kiely M., Kinsella M., Durazo-Arvizu R.A., Tian L., Zhang Y., Lucey A., Flynn A., Gibney M.J., Vesper H.W., et al. Evaluation of Vitamin D Standardization Program protocols for standardizing serum 25-hydroxyvitamin D data: A case study of the program’s potential for national nutrition and health surveys. Am. J. Clin. Nutr. 2013;97:1235–1242. doi: 10.3945/ajcn.112.057182.
    1. Institute of Medicine Food and Nutrition Board . Dietary Reference Intakes for Calcium and Vitamin D. National Academy Press; Washington, DC, USA: 2011.
    1. Burger H.G., Hale G.E., Dennerstein L., Robertson D.M. Cycle and hormone changes during perimenopause: The key role of ovarian function. Menopause. 2008;15:603–612. doi: 10.1097/gme.0b013e318174ea4d.
    1. Manios Y., Moschonis G., Hulshof T., Bourhis A.S., Hull G.L.J., Dowling K.G., Kiely M.E., Cashman K.D. Prevalence of vitamin D deficiency and insufficiency among schoolchildren in Greece: The role of sex, degree of urbanisation and seasonality. Br. J. Nutr. 2017;118:550–558. doi: 10.1017/S0007114517002422.
    1. Manios Y., Moschonis G., Lambrinou C.P., Tsoutsoulopoulou K., Binou P., Karachaliou A., Breidenassel C., Gonzalez-Gross M., Kiely M., Cashman K.D. A systematic review of vitamin D status in southern European countries. Eur. J. Nutr. 2018;57:2001–2036. doi: 10.1007/s00394-017-1564-2.
    1. Bonjour J.P., Benoit V., Pourchaire O., Ferry M., Rousseau B., Souberbielle J.C. Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women. Br. J. Nutr. 2009;102:962–966. doi: 10.1017/S0007114509371743.
    1. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001;22:477–501. doi: 10.1210/edrv.22.4.0437.
    1. Chapuy M.C., Preziosi P., Maamer M., Arnaud S., Galan P., Hercberg S., Meunier P.J. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos. Int. 1997;7:439–443. doi: 10.1007/s001980050030.
    1. Bonjour J.P., Benoit V., Pourchaire O., Rousseau B., Souberbielle J.C. Nutritional approach for inhibiting bone resorption in institutionalized elderly women with vitamin D insufficiency and high prevalence of fracture. J. Nutr. Health Aging. 2011;15:404–409. doi: 10.1007/s12603-011-0003-y.
    1. Bonjour J.P., Benoit V., Rousseau B., Souberbielle J.C. Consumption of vitamin D-and calcium-fortified soft white cheese lowers the biochemical marker of bone resorption TRAP 5b in postmenopausal women at moderate risk of osteoporosis fracture. J. Nutr. 2012;142:698–703. doi: 10.3945/jn.111.153692.
    1. Seibel M.J., Robins S.P., Bilezikian J.P. Dynamics of Bone and Cartilage Metabolism. 2nd ed. Academic Press; San Diego, CA, USA: 2006. pp. 529–540.
    1. Kuo T.R., Chen C.H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark Res. 2017;5:18. doi: 10.1186/s40364-017-0097-4.
    1. Vasikaran S., Cooper C., Eastell R., Griesmacher A., Morris H.A., Trenti T., Kanis J.A. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 2011;49:1271–1274. doi: 10.1515/CCLM.2011.602.
    1. Riggs B.L. Endocrine causes of age-related bone loss and osteoporosis. Novart. Fdn. Symp. 2002;242:247–259.
    1. Iki M., Morita A., Ikeda Y., Sato Y., Akiba T., Matsumoto T., Nishino H., Kagamimori S., Kagawa Y., Yoneshima H., et al. Biochemical markers of bone turnover predict bone loss in perimenopausal women but not in postmenopausal women-the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos. Int. 2006;17:1086–1095. doi: 10.1007/s00198-005-0052-3.
    1. Lofman O., Magnusson P., Toss G., Larsson L. Common biochemical markers of bone turnover predict future bone loss: A 5-year follow-up study. Clin. Chim. Acta. 2005;356:67–75. doi: 10.1016/j.cccn.2004.12.014.
    1. Perrien D.S., Achenbach S.J., Bledsoe S.E., Walser B., Suva L.J., Khosla S., Gaddy D. Bone turnover across the menopause transition: Correlations with inhibins and follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 2006;91:1848–1854. doi: 10.1210/jc.2005-2423.
    1. Colin E.M., Van Den Bemd G.J., Van Aken M., Christakos S., De Jonge H.R., Deluca H.F., Prahl J.M., Birkenhager J.C., Buurman C.J., Pols H.A., et al. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J. Bone Miner. Res. 1999;14:57–64. doi: 10.1359/jbmr.1999.14.1.57.
    1. Cashman K.D., van den Heuvel E.G., Schoemaker R.J., Preveraud D.P., Macdonald H.M., Arcot J. 25-Hydroxyvitamin D as a Biomarker of Vitamin D Status and Its Modeling to Inform Strategies for Prevention of Vitamin D Deficiency within the Population. Adv. Nutr. 2017;8:947–957. doi: 10.3945/an.117.015578.
    1. Dawson-Hughes B., Harris S.S. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am. J. Clin. Nutr. 2002;75:773–779. doi: 10.1093/ajcn/75.4.773.

Source: PubMed

3
S'abonner