Organ Stiffness in the Work-Up of Myelofibrosis and Philadelphia-Negative Chronic Myeloproliferative Neoplasms

Edoardo Benedetti, Rita Tavarozzi, Riccardo Morganti, Benedetto Bruno, Emilia Bramanti, Claudia Baratè, Serena Balducci, Lorenzo Iovino, Federica Ricci, Vittorio Ricchiuto, Gabriele Buda, Sara Galimberti, Edoardo Benedetti, Rita Tavarozzi, Riccardo Morganti, Benedetto Bruno, Emilia Bramanti, Claudia Baratè, Serena Balducci, Lorenzo Iovino, Federica Ricci, Vittorio Ricchiuto, Gabriele Buda, Sara Galimberti

Abstract

To define the role of spleen stiffness (SS) and liver stiffness (LS) in myelofibrosis and other Philadelphia (Ph)-negative myeloproliferative neoplasms (MPNs), we studied, by ultrasonography (US) and elastography (ES), 70 consecutive patients with myelofibrosis (MF) (no.43), essential thrombocythemia (ET) (no.10), and polycythemia vera (PV) (no.17). Overall, the median SS was not different between patients with MF and PV (p = 0.9); however, both MF and PV groups had significantly higher SS than the ET group (p = 0.011 and p = 0.035, respectively) and healthy controls (p < 0.0001 and p = 0.002, respectively). In patients with MF, SS values above 40 kPa were significantly associated with worse progression-free survival (PFS) (p = 0.012; HR = 3.2). SS also correlated with the extension of bone marrow fibrosis (BMF) (p < 0.0001). SS was higher in advanced fibrotic stages MF-2, MF-3 (W.H.O. criteria) than in pre-fibrotic/early fibrotic stages (MF-0, MF-1) (p < 0.0001) and PFS was significantly different in the two cohorts, with values of 63% and 85%, respectively (p = 0.038; HR = 2.61). LS significantly differed between the patient cohort with MF and healthy controls (p = 0.001), but not between the patient cohorts with ET and PV and healthy controls (p = 0.999 and p = 0.101, respectively). We can conclude that organ stiffness adds valuable information to the clinical work-up of MPNs and could be employed to define patients at a higher risk of progression.

Keywords: fibrosis; myeloproliferative neoplasms; spleen; splenic stiffness; ultrasound.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Spleen dimensions in a healthy control: splenic longitudinal diameter (SLD) (10.35 cm) (A), cross-sectional area (CSA) (41.62 cm2) (B), and splenic stiffness (SS) (17.6 kPA, IQR/M 14) (C). Spleen dimensions before and 1 year after treatment with Ruxolitinib in a patient with myelofibrosis: SLD (17.61 cm) (D), CSA (107 cm2) (E), and SS (41.7 kPA, IQR/M 19) (F); and SLD (16.85 cm) (G), CSA (93.64 cm2) (H), and SS (28 kPA, IQR/M 21) (I), respectively.
Figure 2
Figure 2
Comparisons of spleen stiffness (also see text): (A) Healthy controls vs. patients with myeloproliferative neoplasms (p < 0.0001); (B) healthy controls vs. myelofibrosis (MF) (p < 0.0001), healthy controls vs. polycythemia vera (PV) (p = 0.002), essential thrombocytopenia (ET) vs. MF (p = 0.014), and ET vs. PV (p = 0.027).
Figure 3
Figure 3
(A) Correlations of spleen stiffness with the Dynamic International Prognostic Scoring System (DIPSS). A trend between the low-risk and the intermediate (Int-1) group was reported (p = 0.059), while no difference was seen between the Int-1 and Int-2 (p = 0.541) groups, and the Int-1 and Int-2 with the high-risk group (p = 0.611 and p = 0.916). (B) Liver stiffness significantly differed between the patient cohort with MF and healthy controls (p = 0.001), but not between the patient cohorts with ET and PV and healthy controls (p = 0.999 and p = 0.101, respectively). Multiple comparisons did not show differences in liver stiffness between the different MPN categories (ET vs. MF, p = 0.440; ET vs. PV, p = 0.999; and MF vs. PV, p = 0.999).
Figure 4
Figure 4
Spleen stiffness (SS) and bone marrow fibrosis (BMF) and progression-free survival (PFS) (Cox regression model) in patients with myelofibrosis. (A) PFS in patients with SS lower than the median value (40 kPa) (dotted line) vs. those with higher values (solid line) (p = 0.089; Hazard Ratio (HR) = 1.939 (range 0.891-4.071)). (B) PFS in patients with BMF grade MF-0, MF-1 (solid line) vs. those with BMF MF-2, MF-3 (dotted line). F0, F1, F2, and F3 in the legend represent MF-0, MF-1, MF-2, and MF-3, respectively.

References

    1. Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544.
    1. Cervantes F., Dupriez B., Pereira A., Passamonti F., Reilly J.T., Morra E., Vannucchi A.M., Mesa R.A., Demory J.-L., Barosi G., et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–2901. doi: 10.1182/blood-2008-07-170449.
    1. Passamonti F., Cervantes F., Vannucchi A.M., Morra E., Rumi E., Cazzola M., Tefferi A. Dynamic International Prognostic Scoring System (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. Blood. 2010;116:2857–2858. doi: 10.1182/blood-2010-06-293415.
    1. Gangat N., Caramazza D., Vaidya R., George G., Begna K., Schwager S., Van Dyke D., Hanson C., Wu W., Pardanani A., et al. DIPSS plus: A refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J. Clin. Oncol. 2011;29:392–397. doi: 10.1200/JCO.2010.32.2446.
    1. Kuykendall A.T., Talati C., Padron E., Sweet K., Sallman D., List A.F., Lancet J.E., Komrokji R.S. Genetically inspired prognostic scoring system (GIPSS) outperforms dynamic international prognostic scoring system (DIPSS) in myelofibrosis patients. Am. J. Hematol. 2019;94:87–92. doi: 10.1002/ajh.25335.
    1. Guglielmelli P., Lasho T.L., Rotunno G., Mudireddy M., Mannarelli C., Nicolosi M., Pacilli A., Pardanani A., Rumi E., Rosti V., et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients with Primary Myelofibrosis. J. Clin. Oncol. 2018;36:310–318. doi: 10.1200/JCO.2017.76.4886.
    1. Tefferi A., Guglielmelli P., Lasho T.L., Gangat N., Ketterling R.P., Pardanani A., Vannucchi A.M. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J. Clin. Oncol. 2018;36:1769–1770. doi: 10.1200/JCO.2018.78.9867.
    1. Vener C., Fracchiolla N.S., Gianelli U., Calori R., Radaelli F., Iurlo A., Caberlon S., Gerli G., Boiocchi L., Deliliers G.L. Prognostic implications of the European consensus for grading of bone marrow fibrosis in chronic idiopathic myelofibrosis. Blood. 2008;111:1862–1865. doi: 10.1182/blood-2007-09-112953.
    1. Gianelli U., Vener C., Bossi A., Cortinovis I., Iurlo A., Fracchiolla N.S., Savi F., Moro A., Grifoni F., De Philippis C., et al. The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mod. Pathol. 2012;25:1193–1202. doi: 10.1038/modpathol.2012.87.
    1. Gennisson J.-L., Deffieux T., Fink M., Tanter M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging. 2013;94:487–495. doi: 10.1016/j.diii.2013.01.022.
    1. Ophir J., Cespedes I., Ponnekanti H., Yazdi Y., Li X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–134. doi: 10.1177/016173469101300201.
    1. Nightingale K. Acoustic Radiation Force Impulse (ARFI) Imaging: A Review. Curr. Med. Imaging Rev. 2011;7:328–339. doi: 10.2174/157340511798038657.
    1. Hamaguchi M., Kojima T., Itoh Y., Harano Y., Fujii K., Nakajima T., Kato T., Takeda N., Okuda J., Ida K., et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am. J. Gastroenterol. 2007;102:2708–2715. doi: 10.1111/j.1572-0241.2007.01526.x.
    1. Giuffrè M., Macor D., Masutti F., Abazia C., Tinè F., Patti R., Buonocore M.R., Colombo A., Visintin A., Campigotto M., et al. Evaluation of spleen stiffness in healthy volunteers using point shear wave elastography. Ann. Hepatol. 2019;18:736–741. doi: 10.1016/j.aohep.2019.03.004.
    1. Bamber J., Cosgrove D., Dietrich C.F., Fromageau J., Bojunga J., Calliada F., Cantisani V., Correas J.-M., D’Onofrio M., Drakonaki E.E., et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med. 2013;34:169–184. doi: 10.1055/s-0033-1335205.
    1. Niederau C., Sonnenberg A., Muller J.E., Erckenbrecht J.F., Scholten T., Fritsch W.P. Sonographic measurements of the normal liver, spleen, pancreas, and portal vein. Radiology. 1983;149:537–540. doi: 10.1148/radiology.149.2.6622701.
    1. Lamb P.M., Lund A., Kanagasabay R.R., Martin A., Webb J.A.W., Reznek R.H. Spleen size: How well do linear ultrasound measurements correlate with three-dimensional CT volume assessments? Br. J. Radiol. 2002;75:573–577. doi: 10.1259/bjr.75.895.750573.
    1. Gaiani S., Gramantieri L., Venturoli N., Piscaglia F., Siringo S., D’Errico A., Zironi G., Grigioni W., Bolondi L. What is the criterion for differentiating chronic hepatitis from compensated cirrhosis? A prospective study comparing ultrasonography and percutaneous liver biopsy. J. Hepatol. 1997;27:979–985. doi: 10.1016/S0168-8278(97)80140-7.
    1. Berzigotti A., Piscaglia F. Ultrasound in portal hypertension--part 1. Ultraschall Med. 2011;32:548–571. doi: 10.1055/s-0031-1281856.
    1. Castera L., Foucher J., Bernard P.-H., Carvalho F., Allaix D., Merrouche W., Couzigou P., de Ledinghen V. Pitfalls of liver stiffness measurement: A 5-year prospective study of 13,369 examinations. Hepatology. 2010;51:828–835. doi: 10.1002/hep.23425.
    1. Dietrich C.F., Bamber J., Berzigotti A., Bota S., Cantisani V., Castera L., Cosgrove D., Ferraioli G., Friedrich-Rust M., Gilja O.H., et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version) Ultraschall Med. 2017;38:e16–e47. doi: 10.1055/s-0043-103952.
    1. Wang C.Z., Zheng J., Huang Z.P., Xiao Y., Song D., Zeng J., Zheng H.R., Zheng R.Q. Influence of Measurement Depth on the Stiffness Assessment of Healthy Liver with Real-Time Shear Wave Elastography. Ultrasound Med. Biol. 2014;40:461–469. doi: 10.1016/j.ultrasmedbio.2013.10.021.
    1. Sporea I., Sirli R.L., Deleanu A., Popescu A., Focsa M., Danila M., Tudora A. Acoustic radiation force impulse elastography as compared to transient elastography and liver biopsy in patients with chronic hepatopathies. Ultraschall Med. 2011;32:S46–S52. doi: 10.1055/s-0029-1245360.
    1. Barr R.G., Ferraioli G., Palmeri M.L., Goodman Z.D., Garcia-Tsao G., Rubin J., Garra B., Myers R.P., Wilson S.R., Rubens D., et al. Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Ultrasound Q. 2016;32:94–107. doi: 10.1097/RUQ.0000000000000209.
    1. Procopet B., Berzigotti A., Abraldes J.G., Turon F., Hernandez-Gea V., García-Pagán J.C., Bosch J. Real-time shear-wave elastography: Applicability, reliability and accuracy for clinically significant portal hypertension. J. Hepatol. 2015;62:1068–1075. doi: 10.1016/j.jhep.2014.12.007.
    1. Woo H., Lee J.Y., Yoon J.H., Kim W., Cho B., Choi B.I. Comparison of the reliability of acoustic radiation force impulse imaging and supersonic shear imaging in measurement of liver stiffness1. Radiology. 2015;277:881–886. doi: 10.1148/radiol.2015141975.
    1. Saftoiu A., Gilja O.H., Sidhu P.S., Dietrich C.F., Cantisani V., Amy D., Bachmann-Nielsen M., Bob F., Bojunga J., Brock M., et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall Med. 2019;40:425–453. doi: 10.1055/a-0838-9937.
    1. Barosi G., Mesa R., Finazzi G., Harrison C., Kiladjian J.-J., Lengfelder E., McMullin M.F., Passamonti F., Vannucchi A.M., Besses C., et al. Revised response criteria for polycythemia vera and essential thrombocythemia: An ELN and IWG-MRT consensus project. Blood. 2013;121:4778–4781. doi: 10.1182/blood-2013-01-478891.
    1. Tefferi A., Cervantes F., Mesa R., Passamonti F., Verstovsek S., Vannucchi A.M., Gotlib J., Dupriez B., Pardanani A., Harrison C., et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122:1395–1398. doi: 10.1182/blood-2013-03-488098.
    1. Pardanani A., Finke C., Abdelrahman R.A., Lasho T.L., Tefferi A. Associations and prognostic interactions between circulating levels of hepcidin, ferritin and inflammatory cytokines in primary myelofibrosis. Am. J. Hematol. 2013;88:312–316. doi: 10.1002/ajh.23406.
    1. Iurlo A., Cattaneo D., Giunta M., Gianelli U., Consonni D., Fraquelli M., Orofino N., Bucelli C., Bianchi P., Augello C., et al. Transient elastography spleen stiffness measurements in primary myelofibrosis patients: A pilot study in a single centre. Br. J. Haematol. 2015;170:890–892. doi: 10.1111/bjh.13343.
    1. Emanuel R.M., Dueck A.C., Geyer H.L., Kiladjian J.-J., Slot S., Zweegman S., Te Boekhorst P.A.W., Commandeur S., Schouten H.C., Sackmann F., et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: Prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J. Clin. Oncol. 2012;30:4098–4103. doi: 10.1200/JCO.2012.42.3863.
    1. Savona M.R. Are we altering the natural history of primary myelofibrosis? Leuk. Res. 2014;38:1004–1012. doi: 10.1016/j.leukres.2014.04.012.
    1. Atkinson N.S.S., Bryant R.V., Dong Y., Maaser C., Kucharzik T., Maconi G., Asthana A.K., Blaivas M., Goudie A., Gilja O.H., et al. WFUMB Position Paper. Learning Gastrointestinal Ultrasound: Theory and Practice. Ultrasound Med. Biol. 2016;42:2732–2742. doi: 10.1016/j.ultrasmedbio.2016.08.026.
    1. Eman A.R., Maha M.E., Alsebaey A., Elmazaly M.A., ElSayed S.T., Hanaa M.B., NermIne A.E. Evaluation of the Role of Liver and Splenic Transient Elastography in Chronic Hepatitis C Related Fibrosis. J. Liver Dis. Transpl. 2016;3
    1. Sharma P., Kirnake V., Tyagi P., Bansal N., Singla V., Kumar A., Arora A. Spleen stiffness in patients with cirrhosis in predicting esophageal varices. Am. J. Gastroenterol. 2013;108:1101–1107. doi: 10.1038/ajg.2013.119.
    1. Karatzas A., Konstantakis C., Aggeletopoulou I., Kalogeropoulou C., Thomopoulos K., Triantos C. Νon-invasive screening for esophageal varices in patients with liver cirrhosis. Ann. Gastroenterol. 2018;31:305–314. doi: 10.20524/aog.2018.0241.
    1. Sekhar M., Roselli M., PATCH D.W., Tripathi D., Danaee A., Li J., Kwong J., Yu D., Roccarina D. Spleen Stiffness in Myeloproliferative Disease Related Splanchnic Vein Thrombosis. Blood. 2016;128:5468. doi: 10.1182/blood.V128.22.5468.5468.
    1. Accurso V., Santoro M., Raso S., Contrino A., Casimiro P., Di Piazza F., Perez A., Russo A., Siragusa S. Splenomegaly impacts prognosis in essential thrombocythemia and polycythemia vera: A single center study. Hematol. Rep. 2019;11:8281. doi: 10.4081/hr.2019.8281.
    1. Barraco D., Cerquozzi S., Hanson C.A., Ketterling R.P., Pardanani A., Gangat N., Tefferi A. Prognostic impact of bone marrow fibrosis in polycythemia vera: Validation of the IWG-MRT study and additional observations. Blood Cancer J. 2017;7:e538. doi: 10.1038/bcj.2017.17.
    1. Lekovic D., Gotic M., Perunicic-Jovanovic M., Vidovic A., Bogdanovic A., Jankovic G., Cokic V., Milic N. Contribution of comorbidities and grade of bone marrow fibrosis to the prognosis of survival in patients with primary myelofibrosis. Med. Oncol. 2014;31:869. doi: 10.1007/s12032-014-0869-8.
    1. Abdel-Wahab O., Pardanani A., Bernard O.A., Finazzi G., Crispino J.D., Gisslinger H., Kralovics R., Odenike O., Bhalla K., Gupta V., et al. Unraveling the genetic underpinnings of myeloproliferative neoplasms and understanding their effect on disease course and response to therapy: Proceedings from the 6th International Post-ASH Symposium. Am. J. Hematol. 2012;87:562–568. doi: 10.1002/ajh.23169.
    1. Kröger N., Kvasnicka M., Thiele J. Replacement of hematopoietic system by allogeneic stem cell transplantation in myelofibrosis patients induces rapid regression of bone marrow fibrosis. Fibrogenesis Tissue Repair. 2012;5:S25. doi: 10.1186/1755-1536-5-S1-S25.
    1. Silver R.T., Vandris K., Goldman J.J. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: A preliminary report. Blood. 2011;117:6669–6672. doi: 10.1182/blood-2010-11-320069.
    1. Verstovsek S., Mesa R.A., Gotlib J., Levy R.S., Gupta V., DiPersio J.F., Catalano J.V., Deininger M., Miller C., Silver R.T., et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N. Engl. J. Med. 2012;366:799–807. doi: 10.1056/NEJMoa1110557.
    1. Cervantes F., Vannucchi A.M., Kiladjian J.-J., Al-Ali H.K., Sirulnik A., Stalbovskaya V., McQuitty M., Hunter D.S., Levy R.S., Passamonti F., et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–4053. doi: 10.1182/blood-2013-02-485888.

Source: PubMed

3
S'abonner