Mechanisms of immune evasion and current status of checkpoint inhibitors in non-small cell lung cancer

Angel Qin, David G Coffey, Edus H Warren, Nithya Ramnath, Angel Qin, David G Coffey, Edus H Warren, Nithya Ramnath

Abstract

In the past several years, immunotherapy has emerged as a viable treatment option for patients with advanced non-small cell lung cancer (NSCLC) without actionable driver mutations that have progressed on standard chemotherapy. We are also beginning to understand the methods of immune evasion employed by NSCLC which likely contribute to the 20% response rate to immunotherapy. It is also yet unclear what tumor or patient factors predict response to immunotherapy. The objectives of this review are (1) review the immunogenicity of NSCLC (2) describe the mechanisms of immune evasion (3) summarize efforts to target the anti-program death-1 (PD-1) and anti-program death-ligand 1(PD-L1) pathway (4) outline determinants of response to PD-1/PD-L1 therapy and (5) discuss potential future areas for research.

Keywords: Determinants of response; PD-1; PD-L1; immune evasion; non-small cell lung cancer.

© 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Top panel (A) depicts the active antitumor immune response and the interactions within the tumor microenvironment that lead to tumor cell apoptosis. Tumor antigen presentation by APCs stimulates activation of CD8+ CTLs through interaction of MHCI/TCR and B7/CD28; in turn, this leads to activation of pathways involved in CTL proliferation and IL‐2 production. The APCs also stimulate proliferation of T helper (Th) cells that secrete activating cytokines such as TNFα and IL‐2 which further promote CTL activation and proliferation. CTLs ultimately secrete cytotoxic granules that result in tumor cell death. As a countermeasure, the tumor cells secrete cytokines such as TGFβ and IL‐10 that stimulate FOXP3+ Treg proliferation. Tregs play a crucial role in dampening the immune response through inhibition of CTLs and Th cells. Bottom panel (B) depicts breakdown of the immune response through various evasive mechanisms employed by tumor cells that lead to tumor progression. Alterations of the MHCI and downregulation of TAP1 by tobacco smoke hinder APC function. FOXP3+ Tregs bind to activating cytokines such as IL‐2, thereby limiting CTL proliferation and activation. An increased density of FOXP3+ Treg cells and decreased CTLs is thought to contribute to tumor cell proliferation. APC, antigen presenting cells; CTL, cytotoxic T lymphocyte; TNF, tumor necrosis factor.

References

    1. Siegel, R. L. , Miller K. D., and Jemal A.. 2016. Cancer statistics, 2016. CA Cancer J. Clin. 66:7–30.
    1. Ettinger, D. S. , Akerley W., Borghaei H., et al. 2012. Non‐small cell lung cancer. J. Natl. Compr. Canc. Netw. 10:1236–1271.
    1. Smyth, M. J. , Dunn G. P., and Schreiber R. D.. 2006. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 90:1–50.
    1. Lawrence, M. S. , Stojanov P., Polak P., et al. 2013. Mutational heterogeneity in cancer and the search for new cancer‐associated genes. Nature 499:214–218.
    1. Schiller, J. H. , Morgan‐Ihrig C., and Levitt M. L.. 1995. Concomitant administration of interleukin‐2 plus tumor necrosis factor in advanced non‐small cell lung cancer. Am. J. Clin. Oncol. 18:47–51.
    1. Ardizzoni, A. , Salvati F., Rosso R., et al. 1993. Combination of chemotherapy and recombinant alpha‐interferon in advanced non‐small cell lung cancer. Multicentric randomized FONICAP Trial Report. The Italian lung cancer task force. Cancer 72:2929–2935.
    1. Nemunaitis, J. , Dillman R. O., Schwarzenberger P. O., et al. 2006. Phase II study of belagenpumatucel‐L, a transforming growth factor beta‐2 antisense gene‐modified allogeneic tumor cell vaccine in non‐small‐cell lung cancer. J. Clin. Oncol. 24:4721–4730.
    1. Rijavec, E. , Biello F., Genova C., et al. 2015. Belagenpumatucel‐L for the treatment of non‐small cell lung cancer. Expert Opin. Biol. Ther. 15:1371–1379.
    1. Tyagi, P. , and Mirakhur B.. 2009. MAGRIT: the largest‐ever phase III lung cancer trial aims to establish a novel tumor‐specific approach to therapy. Clin. Lung Cancer 10:371–374.
    1. Ganesan, A.‐P. , Johansson M., Ruffell B., et al. 2013. Tumor‐infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J. Immunol. 191:2009–2017.
    1. Kelderman, S. , Schumacher T. N. M., and Haanen J. B. A. G.. 2014. Acquired and intrinsic resistance in cancer immunotherapy. Mol. Oncol. 8:1132–1139.
    1. Foukas, P. G. , Tsilivakos V., Zacharatos P., et al. 2001. Expression of HLA‐DR is reduced in tumor infiltrating immune cells (TIICs) and regional lymph nodes of non‐small‐cell lung carcinomas. A putative mechanism of tumor‐induced immunosuppression? Anticancer Res. 21(4A):2609–2615.
    1. Korkolopoulou, P. , Kaklamanis L., Pezzella F., Harris A. L., and Gatter K. C.. 1996. Loss of antigen‐presenting molecules (MHC class I and TAP‐1) in lung cancer. Br. J. Cancer 73:148–153.
    1. Derniame, S. , Vignaud J.‐M., Faure G. C., and Béné M. C.. 2008. Alteration of the immunological synapse in lung cancer: a microenvironmental approach. Clin. Exp. Immunol. 154:48–55.
    1. Lou, Y. , Vitalis T. Z., Basha G., et al. 2005. Restoration of the expression of transporters associated with antigen processing in lung carcinoma increases tumor‐specific immune responses and survival. Cancer Res. 65:7926–7933.
    1. Fine, C. I. , Han C. D., Sun X., Liu Y., and McCutcheon J. A.. 2002. Tobacco reduces membrane HLA class I that is restored by transfection with transporter associated with antigen processing 1 cDNA. J. Immunol. 169:6012–6019.
    1. Gajewski, T. F. , Schreiber H., and Fu Y.‐X.. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14:1014–1022.
    1. Gajewski, T. F. , Louahed J., and Brichard V. G.. 2010. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16:399–403.
    1. Neurath, M. F. , and Finotto S.. 2012. The emerging role of T cell cytokines in non‐small cell lung cancer. Cytokine Growth Factor Rev. 23:315–322.
    1. Hiraoka, K. , Miyamoto M., Cho Y., et al. 2006. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non‐small‐cell lung carcinoma. Br. J. Cancer 94:275–280.
    1. Zhang, C.‐Y. , Qi Y., Li X.‐N., et al. 2015. The role of CCL20/CCR6 axis in recruiting Treg cells to tumor sites of NSCLC patients. Biomed. Pharmacother. 69:242–248.
    1. Thomas, A. , and Giaccone G.. 2015. Why has active immunotherapy not worked in lung cancer? Ann. Oncol. 26:2213–20.
    1. Shigematsu, Y. , Hanagiri T., Shiota H., et al. 2012. Immunosuppressive effect of regulatory T lymphocytes in lung cancer, with special reference to their effects on the induction of autologous tumor‐specific cytotoxic T lymphocytes. Oncol. Lett. 4:625–630.
    1. Li, L. , Chao Q. G., Ping L. Z., et al. 2009. The prevalence of FOXP3+ regulatory T‐cells in peripheral blood of patients with NSCLC. Cancer Biother. Radiopharm. 24:357–367.
    1. Zhuang, X. , Xia X., Wang C., et al. 2010. A high number of CD8+ T cells infiltrated in NSCLC tissues is associated with a favorable prognosis. Appl. Immunohistochem. Mol. Morphol. 18:24–28.
    1. Petersen, R. P. , Campa M. J., Sperlazza J., et al. 2006. Tumor infiltrating Foxp3+ regulatory T‐cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107:2866–2872.
    1. Fehérvari, Z. , and Sakaguchi S.. 2004. CD4+ Tregs and immune control. J. Clin. Invest. 114:1209–1217.
    1. Gattinoni, L. , Finkelstein S. E., Klebanoff C. A., et al. 2005. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor‐specific CD8+ T cells. J. Exp. Med. 202:907–912.
    1. Trojan, A. , Urosevic M., Dummer R., Giger R., Weder W., and Stahel R. A.. 2004. Immune activation status of CD8+ T cells infiltrating non‐small cell lung cancer. Lung Cancer 44:143–147.
    1. O'Callaghan, D. S. , O'Donnell D., O'Connell F., and O'Byrne K. J.. 2010. The role of inflammation in the pathogenesis of non‐small cell lung cancer. J. Thorac. Oncol. 5:2024–2036.
    1. Kataki, A. , Scheid P., Piet M., et al. 2002. Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host‐defense and tumor progression. J. Lab. Clin. Med. 140:320–328.
    1. Rodriguez, P. C. , Quiceno D. G., Zabaleta J., et al. 2004. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T‐cell receptor expression and antigen‐specific T‐cell responses. Cancer Res. 64:5839–5849.
    1. Nagaraj, S. , Gupta K., Pisarev V., et al. 2007. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13:828–835.
    1. Nirschl, C. J. , and Drake C. G.. 2013. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin. Cancer Res. 19:4917–4924.
    1. Marengère, L. E. , Waterhouse P., Duncan G. S., Mittrücker H. W., Feng G. S., and Mak T. W.. 1996. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA‐4. Science 272:1170–1173.
    1. Gianchecchi, E. , Delfino D. V., and Fierabracci A.. 2013. Recent insights into the role of the PD‐1/PD‐L1 pathway in immunological tolerance and autoimmunity. Autoimmun. Rev. 12:1091–1100.
    1. Francisco, L. M. , Sage P. T., and Sharpe A. H.. 2010. The PD‐1 pathway in tolerance and autoimmunity. Immunol. Rev. 236:219–242.
    1. Sui, X. , Ma J., Han W., et al. 2015. The anticancer immune response of anti‐PD‐1/PD‐L1 and the genetic determinants of response to anti‐PD‐1/PD‐L1 antibodies in cancer patients. Oncotarget 6:19393–19404.
    1. Sheppard, K.‐A. , Fitz L. J., Lee J. M., et al. 2004. PD‐1 inhibits T‐cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 574(1–3):37–41.
    1. Cooper, W. A. , Tran T., Vilain R. E., et al. 2015. PD‐L1 expression is a favorable prognostic factor in early stage non‐small cell carcinoma. Lung Cancer 89:181–188.
    1. Schmidt, L. H. , Kümmel A., Görlich D., et al. 2015. PD‐1 and PD‐L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS ONE 10:e0136023.
    1. Zhang, Y. , Huang S., Gong D., Qin Y., and Shen Q.. 2010. Programmed death‐1 upregulation is correlated with dysfunction of tumor‐infiltrating CD8+ T lymphocytes in human non‐small cell lung cancer. Cell. Mol. Immunol. 7:389–395.
    1. Taube, J. M. , Klein A., Brahmer J. R., et al. 2014. Association of PD‐1, PD‐1 ligands, and other features of the tumor immune microenvironment with response to anti‐PD‐1 therapy. Clin. Cancer Res. 20:5064–5074.
    1. Soria, J.‐C. , Marabelle A., Brahmer J. R., and Gettinger S.. 2015. Immune checkpoint modulation for non‐small cell lung cancer. Clin. Cancer Res. 21:2256–2262.
    1. Hodi, F. S. , O'Day S. J., McDermott D. F., et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–723.
    1. Lynch, T. J. , Bondarenko I., Luft A., et al. 2012. Ipilimumab in combination with paclitaxel and carboplatin as first‐line treatment in stage IIIB/IV non‐small‐cell lung cancer: results from a randomized, double‐blind, multicenter phase II study. J. Clin. Oncol. 30:2046–2054.
    1. Horinouchi, H. , Yamamoto N., Fujiwara Y., et al. 2015. Phase I study of ipilimumab in phased combination with paclitaxel and carboplatin in Japanese patients with non‐small‐cell lung cancer. Invest. New Drugs 33:881–889.
    1. Rizvi, N. A. , Mazières J., Planchard D., et al. 2015. Activity and safety of nivolumab, an anti‐PD‐1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non‐small‐cell lung cancer (CheckMate 063): a phase 2, single‐arm trial. Lancet Oncol. 16:257–265.
    1. Brahmer, J. , Reckamp K. L., Baas P., et al. 2015. Nivolumab versus docetaxel in advanced squamous‐cell non‐small‐cell lung cancer. N. Engl. J. Med. 373:123–135.
    1. Borghaei, H. , Paz‐Ares L., Horn L., et al. 2015. Nivolumab versus docetaxel in advanced nonsquamous non‐small‐cell lung cancer. N. Engl. J. Med. 373:1627–1639.
    1. Garon, E. B. , Rizvi N. A., Hui R., et al. 2015. Pembrolizumab for the treatment of non‐small‐cell lung cancer. N. Engl. J. Med. 372:2018–2028.
    1. Herbst, R. S. , Baas P., Kim D‐ W., et al. Pembrolizumab versus docetaxel for previously treated, PD‐L1‐positive, advanced non‐small‐cell lung cancer (KEYNOTE‐010): a randomised controlled trial. Lancet. 2016;387(10027):1540–1550.
    1. Rizvi, N. A. , Brahmer J. R., and Ou S. H. I., et al. 2015. Safety and clinical activity of MEDI4736, an anti‐programmed cell death‐ligand 1 (PD‐L1) antibody, in patients with non‐small cell lung cancer (NSCLC). J. Clin. Oncol. 33.
    1. Kelly, K. , Patel M. R., Infante J. R., et al. 2015. Avelumab (MSB0010718C), an anti‐PD‐L1 antibody, in patients with metastatic or locally advanced solid tumors: assessment of safety and tolerability in a phase I, open‐label expansion study. J. Clin. Oncol. 33.
    1. Rizvi, N. A. , Hellmann M. D., Snyder A., et al. 2015. Cancer immunology. Mutational landscape determines sensitivity to PD‐1 blockade in non‐small cell lung cancer. Science 348:124–128.
    1. Le, D. T. , Uram J. N., Wang H., et al. 2015. PD‐1 blockade in tumors with mismatch‐repair deficiency. N. Engl. J. Med. 372:2509–2520.
    1. Van Allen, E. M. , Miao D., Schilling B., et al. 2015. Genomic correlates of response to CTLA‐4 blockade in metastatic melanoma. Science 350:207–211.
    1. Simpson, A. J. G. , Caballero O. L., Jungbluth A., Chen Y.‐T., and Old L. J.. 2005. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5:615–625.
    1. Suri, A. 2006. Cancer testis antigens–their importance in immunotherapy and in the early detection of cancer. Expert Opin. Biol. Ther. 6:379–389.
    1. Hebeisen, M. , Oberle S. G., Presotto D., Speiser D. E., Zehn D., and Rufer N.. 2013. Molecular insights for optimizing T cell receptor specificity against cancer. Front Immunol. 4:154.
    1. Herbst, R. S. , Soria J.‐C., Kowanetz M., et al. 2014. Predictive correlates of response to the anti‐PD‐L1 antibody MPDL3280A in cancer patients. Nature 515:563–567.
    1. Tumeh, P. C. , Harview C. L., Yearley J. H., et al. 2014. PD‐1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571.
    1. Zeng, D.‐Q. , Yu Y.‐F., Ou Q.‐Y., et al. 2016. Prognostic and predictive value of tumor‐infiltrating lymphocytes for clinical therapeutic research in patients with non‐small cell lung cancer. Oncotarget 7:13765–13781.
    1. Echchakir, H. , Asselin‐Paturel C., Dorothee G., et al. 1999. Analysis of T‐cell‐receptor beta‐chain‐gene usage in peripheral‐blood and tumor‐infiltrating lymphocytes from human non‐small‐cell lung carcinomas. Int. J. Cancer 81:205–213.
    1. Derniame, S. , Vignaud J.‐M., Faure G. C., Béné M. C., and Massin F.. 2005. Comparative T‐cell oligoclonality in lung, tumor and lymph nodes in human non‐small cell lung cancer. Oncol. Rep. 13:509–515.
    1. Carbognin, L. , Pilotto S., Milella M., et al. 2015. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death‐ligand‐1 (PD‐L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 10:e0130142.
    1. Topalian, S. L. , Hodi F. S., Brahmer J. R., et al. 2012. Safety, activity, and immune correlates of anti‐PD‐1 antibody in cancer. N. Engl. J. Med. 366:2443–2454.
    1. Wolchok, J. D. , Kluger H., Callahan M. K., et al. 2013. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369:122–133.
    1. Thommen, D. S. , Schreiner J., Müller P., et al. 2015. Progression of lung cancer is associated with increased dysfunction of t cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol. Res. 3:1344–1355.
    1. Taube, J. M. 2014. Unleashing the immune system: PD‐1 and PD‐Ls in the pre‐treatment tumor microenvironment and correlation with response to PD‐1/PD‐L1 blockade. Oncoimmunology 3:e963413.
    1. Shahabi, V. , Postow M. A., Tuck D., and Wolchok J. D.. 2015. Immune‐priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy. Am. J. Clin. Oncol. 38:90–97.
    1. Mendes, F. , Antunes C., Abrantes A. M., et al. 2015. Lung cancer: the immune system and radiation. Br. J. Biomed. Sci. 72:78–84.
    1. Deng, L. , Liang H., Burnette B., et al. 2014. Irradiation and anti‐PD‐L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124:687–695.
    1. Curti, B. D. , Kovacsovics‐Bankowski M., Morris N., et al. 2013. OX40 is a potent immune‐stimulating target in late‐stage cancer patients. Cancer Res. 73:7189–7198.
    1. Brignone, C. , Escudier B., Grygar C., Marcu M., and Triebel F.. 2009. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res. 15:6225–6231.
    1. Kwak, J. J. , Tirumani S. H., Van den Abbeele A. D., Koo P. J., and Jacene H. A.. 2015. Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune‐related adverse events. Radiographics 35:424–437.
    1. Horn, L. , Spiegel D. R., and Gettinger S., et al. 2015. Clinical activity, safety and predictive biomarkers of the engineered antibody MPDL3280A (anti‐PDL1) in non‐small cell lung cancer (NSCLC): update from a phase Ia study. J. Clin. Oncol. 33.

Source: PubMed

3
S'abonner