A Urodynamic Comparison of Neural Targets for Transcutaneous Electrical Stimulation to Acutely Suppress Detrusor Contractions Following Spinal Cord Injury

Sean Doherty, Anne Vanhoestenberghe, Lynsey Duffell, Rizwan Hamid, Sarah Knight, Sean Doherty, Anne Vanhoestenberghe, Lynsey Duffell, Rizwan Hamid, Sarah Knight

Abstract

Objectives: To assess and compare the effect of transcutaneous Dorsal Genital Nerve Stimulation (DGNS), Tibial Nerve Stimulation (TNS), Sacral Nerve Stimulation (SNS), and Spinal Stimulation (SS) on Neurogenic Detrusor Overactivity (NDO) and bladder capacity in people with Spinal Cord Injuries (SCI).

Materials and methods: Seven male participants with supra-sacral SCI were tested. Standard cystometry (CMG) was performed to assess bladder activity at baseline and with stimulation applied at each site. This was conducted over four separate sessions. All stimulation was monophasic, 15 Hz, 200 μS pulses and applied at maximum tolerable amplitude. Results were analysed against individual control results from within the same session.

Results: Dorsal Genital Nerve Stimulation increased bladder capacity by 153 ± 146 ml (p = 0.016) or 117 ± 201%. DGNS, TNS and SNS all increased the volume held following the first reflex contraction, by 161 ± 175, 46 ± 62, and 34 ± 33 ml (p = 0.016, p = 0.031, p = 0.016), respectively. SS results showed small reduction of 33 ± 26 ml (p = 0.063) from baseline bladder capacity in five participants. Maximum Detrusor Pressure before leakage was increased during TNS, by 10 ± 13 cmH2O (p = 0.031) but was unchanged during stimulation of other sites. DGNS only was able to suppress at least one detrusor contraction in five participants and reduced first peak detrusor pressure below 40 cmH2O in these 5. Continuous TNS, SNS, and SS produced non-significant changes in bladder capacity from baseline, comparable to conditional stimulation. Increase in bladder capacity correlated with stimulation amplitude for DGNS but not TNS, SNS or SS.

Conclusion: In this pilot study DGNS acutely suppressed detrusor contractions and increased bladder capacity whereas TNS, SNS, and SS did not. This is the first within individual comparison of surface stimulation sites for management of NDO in SCI individuals.

Keywords: bladder; electrical stimulation; incontinence; neurogenic detrusor overactivity; neuromodulation; spinal cord injury.

Copyright © 2019 Doherty, Vanhoestenberghe, Duffell, Hamid and Knight.

Figures

FIGURE 1
FIGURE 1
To stimulate the dorsal genital nerve (a), electrodes were placed on the dorsum of the penile shaft. 1 cm paddle electrodes (Ambu Neuroline 710) were placed approximately 2 cm apart, the cathode was placed proximally. Tibial nerve electrodes (c) were 2.5 cm round surface electrodes (PALS) placed unilaterally 1 cm posterior and approximately 3 cm superior to the medial malleolus (cathode) and approximately 5 cm superior (anode). Sacral electrodes (b) were 5 × 5 cm (PALS) electrodes placed over either side of the sacrum, at the level determined to be over the S3 foramina through manual palpation of the sacrum. Spinal stimulation (d) used 5 cm circular and 7.5 × 10 cm electrodes (PALS) over T11-12 and the abdominal areas, respectively (Hofstoetter et al., 2014).
FIGURE 2
FIGURE 2
Outcome measures shown on a cystometry detrusor pressure trace, from a DGNS trial fill. Volume infused is taken as the outcome at the time point indicated on the pressure trace for Reflex Volume (RV) and End Fill Volume (EFV). VtL, Volume to Leakage; FPDP, First Peak Detrusor Pressure; MDP, Maximum Detrusor Pressure. An example of a suppressed detrusor contraction is highlighted.
FIGURE 3
FIGURE 3
(A) Boxplot of end fill volume and (B) Maximum Detrusor Pressure change from baseline for each site. Boxes show median, interquartile ranges, and error bars denote the range. Stars denote that change from baseline is p < 0.05 following a Wilcoxon Rank Sum test. (C) Amplitude of stimulation vs. change in Volume to Leakage (VtL) for each site. DGNS appears to deliver increased gains when applied at greater amplitudes (R2 = 0.75). (D) Changes from baseline in end fill volumes (EFV) in continuous (green) and conditional (white) stimulation fills. Boxes represent the median and interquartile range of within session changes in EFV, whiskers show the range. (E) Individual changes in VtL as mean values obtained during control and conditional stimulation fills from each session.
FIGURE 4
FIGURE 4
Participant 5 TNS session results. First reflex detrusor contraction (RV) and End Fill Volume (EFV) are shown for each fill in the session. Following the first conditional TNS fill, a noticeable change in volume prior to the first detrusor contraction was seen in each subsequent fill both with and without stimulation.

References

    1. Amarenco G., Ismael S. S., Even-Schneider A., Raibaut P., Demaille-Wlodyka S., Parratte B., et al. (2003). Urodynamic effect of acute transcutaneous posterior tibial nerve stimulation in overactive bladder. J. Urol. 169 2210–2215. 10.1097/
    1. Andrews B. J., Reynard J. M. (2003). Transcutaneous posterior tibial nerve stimulation for treatment of detrusor hyperreflexia in spinal cord injury. J. Urol. 170:926. 10.1097/01.ju.0000080377.71804.fd
    1. Barroso U., Viterbo W., Bittencourt J., Farias T., Lordêlo P. (2013). Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children. J. Urol. 190 673–677. 10.1016/j.juro.2013.02.034
    1. Bourbeau D. J., Creasey G. H., Sidik S., Brose S. W., Gustafson K. J. (2018a). Genital nerve stimulation increases bladder capacity after SCI: a meta-analysis. J. Spinal Cord Med. 41 426–434. 10.1080/10790268.2017.1281372
    1. Bourbeau D. J., Gustafson K. J., Brose S. W. (2018b). At-home genital nerve stimulation for individuals with SCI and neurogenic detrusor overactivity: a pilot feasibility study. J. Spinal Cord Med. 11 1–11. 10.1080/10790268.2017.1422881
    1. Brose S. W., Bourbeau D. J., Gustafson K. J. (2018). Genital nerve stimulation is tolerable and effective for bladder inhibition in sensate individuals with incomplete SCI. J. Spinal Cord Med. 41 174–181. 10.1080/10790268.2017.1279817
    1. Craggs M., McFarlane J. (1999). Neuromodulation of the lower urinary tract. Exp. Physiol. 84 149–160. 10.1111/j.1469-445x.1999.tb00080.x
    1. Craggs M. D., Balasubramaniam A. V., Chung E. A. L., Emmanuel A. V. (2006). Aberrant reflexes and function of the pelvic organs following spinal cord injury in man. Auton. Neurosci. 12 355–370. 10.1016/j.autneu.2006.03.010
    1. de Sèze M., Raibaut P., Gallien P., Even Schneider A., Denys P., Bonniaud V., et al. (2011). Transcutaneous posterior tibial nerve stimulation for treatment of the overactive bladder syndrome in multiple sclerosis: results of a multicenter prospective study. Neurourol. Urodynam. 30 306–311. 10.1002/nau.20958
    1. Eardley I., Nagendran K., Kirby R. S., Fowler C. J. (1990). A new technique for assessing the efferent innervation of the human striated urethral sphincter. J. Urol. 144 948–951. 10.1016/S0022-5347(17)39628-3
    1. Fjorback M. V., van Rey F. S., Rijkhoff N. J. M., Nøhr M., Petersen T., Heesakkers J. P. (2007a). Electrical stimulation of sacral dermatomes in multiple sclerosis patients with neurogenic detrusor overactivity. Neurourol. Urodynam. 26 525–530. 10.1002/nau.20363
    1. Fjorback M. V., van Rey F. S., van der Pal F., Rijkhoff N. J. M., Petersen T., Heesakkers J. P. (2007b). Acute urodynamic effects of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with MS. Eur. Urol. 51 464–472. 10.1016/j.eururo.2006.07.024
    1. Gad P. N., Kreydin E., Zhong H., Latack K., Edgerton V. R. (2018). Non-invasive neuromodulation of spinal cord restores lower urinary tract function after paralysis. Front. Neurosci. 12:432. 10.3389/fnins.2018.00432
    1. Gad P. N., Roy R. R., Zhong H., Gerasimenko Y. P., Taccola G., Edgerton V. R. (2016). Neuromodulation of the neural circuits controlling the lower urinary tract. Exp. Neurol. 285 182–189. 10.1016/j.expneurol.2016.06.034
    1. Gerasimenko Y., Gorodnichev R., Moshonkina T., Sayenko D., Gad P., Reggie Edgerton V. (2015). Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 58 225–231. 10.1016/j.rehab.2015.05.003
    1. Gray S. L., Anderson M. L., Dublin S., Hanlon J. T., Hubbard R., Walker R., et al. (2015). Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern. Med. 175 401–407. 10.1001/jamainternmed.2014.7663
    1. Harkema S., Gerasimenko Y., Hodes J., Burdick J., Angeli C., Chen Y., et al. (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377 1938–1947. 10.1016/S0140-6736(11)60547-3
    1. Herrity A. N., Williams C. S., Angeli C. A., Harkema S. J., Hubscher C. H. (2018). Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci. Rep. 8:8688. 10.1038/s41598-018-26602-2
    1. Hoen L. T., Ecclestone H., Blok B. F. M., Karsenty G., Phé V., Bossier R., et al. (2017). Long-term effectiveness and complication rates of bladder augmentation in patients with neurogenic bladder dysfunction: a systematic review. Neurourol. Urodynam. 36 1685–1702. 10.1002/nau.23205
    1. Hofstoetter U. S., Freundl B., Binder H., Minassian K. (2018). Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes. PLoS One 13:e0192013. 10.1371/journal.pone.0192013
    1. Hofstoetter U. S., McKay W. B., Tansey K. E., Mayr W., Kern H., Minassian K. (2014). Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 37 202–211. 10.1179/2045772313Y.0000000149
    1. Kabay S. C., Kabay S., Mestan E., Cetiner M., Ayas S., Sevim M., et al. (2017). Long term sustained therapeutic effects of percutaneous posterior tibial nerve stimulation treatment of neurogenic overactive bladder in multiple sclerosis patients: 12-months results. Neurourol. Urodynam. 36 104–110. 10.1002/nau.22868
    1. Kabay S. C., Kabay S., Yucel M., Ozden H. (2009). Acute urodynamic effects of percutaneous posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with Parkinson’s disease. Neurourol. Urodynam. 28 62–67. 10.1002/nau.20593
    1. Kabay S. C., Yucel M., Kabay S. (2008). Acute effect of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with multiple sclerosis: urodynamic study. Urology 71 641–645. 10.1016/j.urology.2007.11.135
    1. Kirkham A., Shah N., Knight S., Shah P., Craggs M. (2001). The acute effects of continuous and conditional neuromodulation on the bladder in spinal cord injury. Spinal Cord 39 420–428. 10.1038/sj.sc.3101177
    1. Kirkham A. P. S., Knight S. L., Craggs M. D., Casey A. T. M., Shah P. J. R. (2002). Neuromodulation through sacral nerve roots 2 to 4 with a finetech-brindley sacral posterior and anterior root stimulator. Spinal Cord 40 272–281. 10.1038/sj.sc.3101278
    1. Kovacevic M., Yoo P. B. (2015). Reflex neuromodulation of bladder function elicited by posterior tibial nerve stimulation in anesthetized rats. Am. J. Physiol. Ren. Physiol. 308 F320–F329. 10.1152/ajprenal.00212.2014
    1. Lee Y.-H., Creasey G. H. (2002). Self-controlled dorsal penile nerve stimulation to inhibit bladder hyperreflexia in incomplete spinal cord injury: a case report. Arch. Phys. Med. Rehabil. 83 273–277. 10.1053/apmr.2002.28817
    1. Lee Y. H., Kim S. H., Kim J. M., Im H. T., Choi I. S., Lee K. W. (2012). The effect of semiconditional dorsal penile nerve electrical stimulation on capacity and compliance of the bladder with deformity in spinal cord injury patients: a pilot study. Spinal Cord 50 289–293. 10.1038/sc.2011.141
    1. Lindström S., Fall M., Carlsson C. A., Erlandson B. E. (1983). The neurophysiological basis of bladder inhibition in response to intravaginal electrical stimulation. J. Urol. 129 405–410. 10.1016/S0022-5347(17)52127-8
    1. Liu C. W., Attar K. H., Gall A., Shah J., Craggs M. (2010). The relationship between bladder management and health-related quality of life in patients with spinal cord injury in the UK. Spinal Cord 48 319–324. 10.1038/sc.2009.132
    1. Mai J., Pedersen E. (1976). Central effect of bladder filling and voiding. J. Neurol. Neurosurg. Psychiatr. 39 171–177. 10.1136/jnnp.39.2.171
    1. Martens F. M., van Kuppevelt H. J., Beekman J. A., Rijkhoff N. J., Heesakkers J. P. (2010). Limited value of bladder sensation as a trigger for conditional neurostimulation in spinal cord injury patients. Neurourol. Urodynam. 29 395–400. 10.1002/nau.20770
    1. McGuire E. J., Zhang S. C., Horwinski E. R., Lytton B. (1983). Treatment of motor and sensory detrusor instability by electrical stimulation. J. Urol. 129 78–79. 10.1016/s0022-5347(17)51928-x
    1. Meglio M., Cioni B., D’amico E., Ronzoni G., Rossi G. F. (1980). Epidural spinal cord stimulation for the treatment of neurogenic bladder. Acta Neurochir. 54 191–199. 10.1007/BF01407085
    1. Nakamura M., Sakurai T. (1984). Bladder inhibition by penile electrical stimulation. BJU Int. 56 413–415. 10.1111/j.1464-410X.1984.tb05833.x
    1. Niu T., Bennett C. J., Keller T. L., Leiter J. C., Lu D. C. (2018). A proof-of-concept study of transcutaneous magnetic spinal cord stimulation for neurogenic bladder. Sci. Rep. 8:12549. 10.1038/s41598-018-30232-z
    1. Pedersen E., Harving H., Klemar B., Torring J. (1978). Human anal reflexes. J. Neurol. Neurosurg. Psychiatr. 41 813–818. 10.1136/jnnp.41.9.813
    1. Peters K. M., Carrico D. J., Wooldridge L. S., Miller C. J., MacDiarmid S. A. (2013). Percutaneous tibial nerve stimulation for the long-term treatment of overactive bladder: 3-year results of the STEP study. J. Urol. 189 2194–2201. 10.1016/j.juro.2012.11.175
    1. Previnaire J. G., Soler J. M., Perrigot M., Boileau G., Delahaye H., Schumacker P., et al. (1996). Short-term effect of pudendal nerve electrical stimulation on detrusor hyperreflexia in spinal cord injury patients: importance of current strength. Spinal Cord 34 95–99. 10.1038/sc.1996.17
    1. Quintiliano F., Veiga M. L., Moraes M., Cunha C., de Oliveira L. F., Lordêlo P., et al. (2015). Transcutaneous parasacral electrical stimulation vs oxybutynin for the treatment of overactive bladder in children: a randomized clinical trial. J. Urol. 193 1749–1753. 10.1016/j.juro.2014.12.001
    1. Reitz A., Schmid D. M., Curt A., Knapp P. A., Schurch B. (2003). Afferent fibers of the pudendal nerve modulate sympathetic neurons controlling the bladder neck. Neurourol. Urodynam. 22 597–601. 10.1002/nau.10134
    1. Reitz A., Stöhrer M., Kramer G., Del Popolo G., Chartier-Kastler E., Pannek J., et al. (2004). European experience of 200 cases treated with botulinum-A toxin injections into the detrusor muscle for urinary incontinence due to neurogenic detrusor overactivity. Eur. Urol. 45 510–515. 10.1016/j.eururo.2003.12.004
    1. Ren J., Chew D. J., Thiruchelvam N. (2016). Electrical stimulation of the spinal dorsal root inhibits reflex bladder contraction and external urethra sphincter activity: is this how sacral neuromodulation works? Urol. Int. 96 360–366. 10.1159/000444591
    1. Rosier P. F. W. M., Schaefer W., Lose G., Goldman H. B., Guralnick M., Eustice S., et al. (2017). International continence society good urodynamic practices and terms 2016: urodynamics, uroflowmetry, cystometry, and pressure-flow study. Neurourol. Urodynam. 36 1243–1260. 10.1002/nau.23124
    1. Schneider M. P., Gross T., Bachmann L. M., Blok B. F. M., Castro-Diaz D., Del Popolo G., et al. (2015). Tibial nerve stimulation for treating neurogenic lower urinary tract dysfunction: a systematic review. Eur. Urol. 68 859–867. 10.1016/j.eururo.2015.07.001
    1. Sheriff M. K., Shah P. J., Fowler C., Mundy A. R., Craggs M. D. (1996). Neuromodulation of detrusor hyper-reflexia by functional magnetic stimulation of the sacral roots. Br. J. Urol. 78 39–46. 10.1046/j.1464-410x.1996.00358.x
    1. Sievert K. D., Amend B., Gakis G., Toomey P., Badke A., Kaps H. P., et al. (2010). Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann. Neurol. 67 74–84. 10.1002/ana.21814
    1. Snellings A. E., Grill W. M. (2012). Effects of stimulation site and stimulation parameters on bladder inhibition by electrical nerve stimulation. BJU Int. 110 136–143. 10.1111/j.1464-410X.2011.10789.x
    1. Su X., Nickles A., Nelson D. E. (2012). Comparison of neural targets for neuromodulation of bladder micturition reflex in the rat. Am. J. Physiol. Ren. Physiol. 303 F1196–F1206. 10.1152/ajprenal.00343.2012
    1. Vodusek D. B., Light J. K., Libby J. M. (1986). Detrusor inhibition induced by stimulation of pudendal nerve afferents. Neurourol. Urodynam. 5 381–389. 10.1002/nau.1930050404
    1. Walsh I. K., Thompson T., Loughridge W. G. G., Johnston S. R., Keane P. F., Stone A. R. (2001). Non-invasive antidromic neurostimulation: a simple effective method for improving bladder storage. Neurourol. Urodynam. 20 73–84. 10.1002/1520-6777
    1. Wöllner J., Krebs J., Pannek J. (2016). Sacral neuromodulation in patients with neurogenic lower urinary tract dysfunction. Spinal Cord 54 137–140. 10.1038/sc.2015.124
    1. Wöllner J., Pannek J. (2016). Initial experience with the treatment of neurogenic detrusor overactivity with a new β-3 agonist (mirabegron) in patients with spinal cord injury. Spinal Cord 54 78–82. 10.1038/sc.2015.195

Source: PubMed

3
S'abonner