HCMV infection of human trophoblast progenitor cells of the placenta is neutralized by a human monoclonal antibody to glycoprotein B and not by antibodies to the pentamer complex

Martin Zydek, Matthew Petitt, June Fang-Hoover, Barbara Adler, Lawrence M Kauvar, Lenore Pereira, Takako Tabata, Martin Zydek, Matthew Petitt, June Fang-Hoover, Barbara Adler, Lawrence M Kauvar, Lenore Pereira, Takako Tabata

Abstract

Human cytomegalovirus (HCMV) is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs), the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs) give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs). Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A) showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb), TRL345, reactive with glycoprotein B (gB), but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

Figures

Figure 1
Figure 1
TBPCs express markers of trophoblasts and pluripotency. TBPCs from 7.3 weeks (left panel) and 15.6 weeks (right panel) of gestation were immunostained for CK7 (A, E), HMGA2 (B, F), GATA-4 (C, G) or GATA-3 (D, H). Nuclei were counterstained with DAPI. Scale bar = 100 µm.
Figure 2
Figure 2
VR1814 and AD169 replicate in TBPCs. Cells from 15.6 weeks (A) or 7.3 weeks (B) of gestation were infected (MOI 2) and immunostained for HCMV IE1, pUL112/pUL113 or pp28 at the indicated time points (green). Mock-infected controls were immunostained for CK7 (red). Nuclei were counterstained with DAPI (blue). Scale bar = 100 µm.
Figure 3
Figure 3
(A) Infected TBPCs release progeny virions. CM from VR1814- and AD169-infected TBPCs and HFFs (MOI 0.1) were collected at the indicated time points and titrated on HFFs. (B) Progeny virions from TBPCs retain tropism. CM from VR1814- and AD169-infected TBPCs (8 dpi) was added to HFFs and ARPE-19 cells, and IE1 was immunostained (1 dpi). Nuclei were counterstained with DAPI. Scale bar = 200 µm.
Figure 4
Figure 4
HCMV pentamer complex is dispensable for virion entry into TBPCs. ARPE-19 cells (AF), HFFs (GL) and TBPCs (MS) were mock infected or infected (MOI 2) with parental TB40/E and UL131A-deficient mutant (ΔUL131A) and immunostained for IE1 proteins (2 dpi). Nuclei were counterstained with DAPI (blue). Scale bar = 100 µm.
Figure 5
Figure 5
Infection of TBPCs is blocked by a mAb to gB but not mAbs to the pentamer complex. (A) VR1814 (MOI 0.01) was pre-incubated with medium alone, a serial log10 dilution of the indicated mAb (0.01–10 µg/mL) or HIG (0.1–100 µg/mL). Virus-antibody mixtures were then applied to ARPE-19 cells. At 2 dpi, IE1 was immunostained and numbers of infected cells were counted. Data were normalized to the no Ab control. Error bars indicate standard deviation. (B) TBPCs were incubated with virus-antibody mixtures and analyzed as described for panel A.
Figure 6
Figure 6
Neutralizing anti-gB mAb TRL345 precludes VR1814 infection and rescues TBPC differentiation. VR1814 was pretreated with 20 µg/mL of the indicated mAbs, and the mixtures were adsorbed to TBPCs. At 3 dpi, the cells were reseeded on matrigel and cultured in differentiation medium for 24 h followed by light microscopic analysis. Lower magnification photographs (upper panel), higher magnification photographs (lower panel). Scale bars = 200 µm.

References

    1. Britt W.J. Congenital cytomegalovirus infection. In: Hitchcock P.J., MacKay H.T., Wasserheit J.N., editors. Sexually Transmitted Diseases and Adverse Outcomes of Pregnancy. ASM Press; Washington, DC, USA: 1999. pp. 269–281.
    1. Demmler G.J. Congenital cytomegalovirus infection and disease. Adv. Pediatr. Infect. Dis. 1996;11:135–162.
    1. Rivera L.B., Boppana S.B., Fowler K.B., Britt W.J., Stagno S., Pass R.F. Predictors of hearing loss in children with symptomatic congenital cytomegalovirus infection. Pediatrics. 2002;110:762–767. doi: 10.1542/peds.110.4.762.
    1. Pereira L., Petitt M., Fong A., Tsuge M., Tabata T., Fang-Hoover J., Maidji E., Zydek M., Zhou Y., Inoue N., et al. Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J. Infect. Dis. 2014 doi: 10.1093/infdis/jiu019.
    1. Fowler K.B., Stagno S., Pass R.F. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA. 2003;289:1008–1011.
    1. Yamamoto A.Y., Mussi-Pinhata M.M., Isaac Mde L., Amaral F.R., Carvalheiro C.G., Aragon D.C., Manfredi A.K., Boppana S.B., Britt W.J. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatr. Infect. Dis. J. 2011;30:1043–1046. doi: 10.1097/INF.0b013e31822d9640.
    1. Ross S.A., Fowler K.B., Ashrith G., Stagno S., Britt W.J., Pass R.F., Boppana S.B. Hearing loss in children with congenital cytomegalovirus infection born to mothers with preexisting immunity. J. Pediatr. 2006;148:332–336. doi: 10.1016/j.jpeds.2005.09.003.
    1. Mercorelli B., Sinigalia E., Loregian A., Palu G. Human cytomegalovirus DNA replication: Antiviral targets and drugs. Rev. Med. Virol. 2008;18:177–210. doi: 10.1002/rmv.558.
    1. Benoist G., Leruez-Ville M., Magny J.F., Jacquemard F., Salomon L.J., Ville Y. Management of pregnancies with confirmed cytomegalovirus fetal infection. Fetal. Diagn. Ther. 2013;33:203–214. doi: 10.1159/000342752.
    1. Nigro G., Adler S.P., Parruti G., Anceschi M.M., Coclite E., Pezone I., Di Renzo G.C. Immunoglobulin therapy of fetal cytomegalovirus infection occurring in the first half of pregnancy—A case-control study of the outcome in children. J. Infect. Dis. 2012;205:215–227. doi: 10.1093/infdis/jir718.
    1. Buxmann H., Stackelberg O.M., Schlosser R.L., Enders G., Gonser M., Meyer-Wittkopf M., Hamprecht K., Enders M. Use of cytomegalovirus hyperimmunoglobulin for prevention of congenital cytomegalovirus disease: A retrospective analysis. J. Perinat. Med. 2012;40:439–446.
    1. Nigro G., Adler S.P., La Torre R., Best A.M. Passive immunization during pregnancy for congenital cytomegalovirus infection. New Engl. J. Med. 2005;353:1350–1362. doi: 10.1056/NEJMoa043337.
    1. Nigro G., Torre R.L., Pentimalli H., Taverna P., Lituania M., de Tejada B.M., Adler S.P. Regression of fetal cerebral abnormalities by primary cytomegalovirus infection following hyperimmunoglobulin therapy. Prenat. Diagn. 2008;28:512–517. doi: 10.1002/pd.2013.
    1. Maidji E., Nigro G., Tabata T., McDonagh S., Nozawa N., Shiboski S., Muci S., Anceschi M.M., Aziz N., Adler S.P., Pereira L. Antibody treatment promotes compensation for human cytomegalovirus-induced pathogenesis and a hypoxia-like condition in placentas with congenital infection. Am. J. Pathol. 2010;177:1298–1310. doi: 10.2353/ajpath.2010.091210.
    1. Adler S.P., Nigro G. Findings and conclusions from cmv hyperimmune globulin treatment trials. J. Clin. Virol. 2009;46:S54–S57. doi: 10.1016/j.jcv.2009.08.017.
    1. Nightingale S.L. From the food and drug administration. JAMA. 1990;264:2863. doi: 10.1001/jama.1990.03450220025005.
    1. Snydman D.R., Werner B.G., Heinze-Lacey B., Berardi V.P., Tilney N.L., Kirkman R.L., Milford E.L., Cho S.I., Bush H.L., Jr., Levey A.S., et al. Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal-transplant recipients. New Engl. J. Med. 1987;317:1049–1054. doi: 10.1056/NEJM198710223171703.
    1. Ballow M. Mechanisms of action of intravenous immune serum globulin therapy. Pediatr. Infect. Dis. J. 1994;13:806–811. doi: 10.1097/00006454-199409000-00012.
    1. Macagno A., Bernasconi N.L., Vanzetta F., Dander E., Sarasini A., Revello M.G., Gerna G., Sallusto F., Lanzavecchia A. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gh/gl/ul128–131a complex. J. Virol. 2010;84:1005–1013. doi: 10.1128/JVI.01809-09.
    1. Collarini E.J., Lee F.E., Foord O., Park M., Sperinde G., Wu H., Harriman W.D., Carroll S.F., Ellsworth S.L., Anderson L.J., et al. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from b cells of infected patients. J. Immunol. 2009;183:6338–6345. doi: 10.4049/jimmunol.0901373.
    1. Harriman W.D., Collarini E.J., Sperinde G.V., Strandh M., Fatholahi M.M., Dutta A., Lee Y., Mettler S.E., Keyt B.A., Ellsworth S.L., et al. Antibody discovery via multiplexed single cell characterization. J. Immunol. Methods. 2009;341:135–145. doi: 10.1016/j.jim.2008.11.009.
    1. Wrammert J., Smith K., Miller J., Langley W.A., Kokko K., Larsen C., Zheng N.Y., Mays I., Garman L., Helms C., et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 2008;453:667–671. doi: 10.1038/nature06890.
    1. McCutcheon K.M., Gray J., Chen N.Y., Liu K., Park M., Ellsworth S., Tripp R.A., Mark Tompkins S., Johnson S.K., et al. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets. MAbs. 2014;6:460–473.
    1. Damsky C.H., Fisher S.J. Trophoblast pseudo-vasculogenesis: Faking it with endothelial adhesion receptors. Curr. Opin. Cell Biol. 1998;10:660–666. doi: 10.1016/S0955-0674(98)80043-4.
    1. Zhou Y., Fisher S.J., Janatpour M., Genbacev O., Dejana E., Wheelock M., Damsky C.H. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J. Clin. Invest. 1997;99:2139–2151. doi: 10.1172/JCI119387.
    1. Hemberger M., Udayashankar R., Tesar P., Moore H., Burton G.J. Elf5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum. Mol. Genet. 2010;19:2456–2467. doi: 10.1093/hmg/ddq128.
    1. Genbacev O., Donne M., Kapidzic M., Gormley M., Lamb J., Gilmore J., Larocque N., Goldfien G., Zdravkovic T., McMaster M.T., Fisher S.J. Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells. 2011;29:1427–1436.
    1. Genbacev O., Lamb J.D., Prakobphol A., Donne M., McMaster M.T., Fisher S.J. Human trophoblast progenitors: Where do they reside? Semin. Reprod. Med. 2013;31:56–61. doi: 10.1055/s-0032-1331798.
    1. Fisher S., Genbacev O., Maidji E., Pereira L. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: Implications for transmission and pathogenesis. J. Virol. 2000;74:6808–6820. doi: 10.1128/JVI.74.15.6808-6820.2000.
    1. Maidji E., Genbacev O., Chang H.T., Pereira L. Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J. Virol. 2007;81:4701–4712. doi: 10.1128/JVI.02748-06.
    1. Pereira L., Maidji E., McDonagh S., Genbacev O., Fisher S. Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J. Virol. 2003;77:13301–13314. doi: 10.1128/JVI.77.24.13301-13314.2003.
    1. Pereira L., Maidji E., McDonagh S., Tabata T. Insights into viral transmission at the uterine-placental interface. Trends Microbiol. 2005;13:164–174.
    1. Tabata T., McDonagh S., Kawakatsu H., Pereira L. Cytotrophoblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: A quantitative analysis. Placenta. 2007;28:527–537. doi: 10.1016/j.placenta.2006.05.006.
    1. McDonagh S., Maidji E., Chang H.T., Pereira L. Patterns of human cytomegalovirus infection in term placentas: A preliminary analysis. J. Clin. Virol. 2006;35:210–215. doi: 10.1016/j.jcv.2005.08.011.
    1. Maidji E., McDonagh S., Genbacev O., Tabata T., Pereira L. Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal fc receptor-mediated transcytosis. Am. J. Pathol. 2006;168:1210–1226. doi: 10.2353/ajpath.2006.050482.
    1. Nozawa N., Fang-Hoover J., Tabata T., Maidji E., Pereira L. Cytomegalovirus-specific, high-avidity igg with neutralizing activity in maternal circulation enriched in the fetal bloodstream. J. Clin. Virol. 2009;46:S58–S63.
    1. Tabata T., Petitt M., Zydek M., Fang-Hoover J., Larocque N., Tsuge M., Gormley M., Genbacev O., Pereira L. Human cytomegalovirus infection of trophoblast progenitor cells inhibits early steps of differentiation. 2014. To be submitted for publication.
    1. Isaacson M.K., Compton T. Human cytomegalovirus glycoprotein b is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J. Virol. 2009;83:3891–3903. doi: 10.1128/JVI.01251-08.
    1. Wille P.T., Wisner T.W., Ryckman B., Johnson D.C. Human cytomegalovirus (hcmv) glycoprotein gb promotes virus entry in trans acting as the viral fusion protein rather than as a receptor-binding protein. mBio. 2013;4:e00332–00313.
    1. Compton T., Nowlin D.M., Cooper N.R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology. 1993;193:834–841. doi: 10.1006/viro.1993.1192.
    1. Carlson C., Britt W.J., Compton T. Expression, purification, and characterization of a soluble form of human cytomegalovirus glycoprotein b. Virology. 1997;239:198–205. doi: 10.1006/viro.1997.8892.
    1. Wang X., Huong S.M., Chiu M.L., Raab-Traub N., Huang E.S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature. 2003;424:456–461. doi: 10.1038/nature01818.
    1. Soroceanu L., Akhavan A., Cobbs C.S. Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature. 2008;455:391–395. doi: 10.1038/nature07209.
    1. Feire A.L., Roy R.M., Manley K., Compton T. The glycoprotein b disintegrin-like domain binds beta 1 integrin to mediate cytomegalovirus entry. J. Virol. 2010;84:10026–10037. doi: 10.1128/JVI.00710-10.
    1. Feire A.L., Koss H., Compton T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA. 2004;101:15470–15475. doi: 10.1073/pnas.0406821101.
    1. Vanarsdall A.L., Ryckman B.J., Chase M.C., Johnson D.C. Human cytomegalovirus glycoproteins gb and gh/gl mediate epithelial cell-cell fusion when expressed either in cis or in trans. J. Virol. 2008;82:11837–11850. doi: 10.1128/JVI.01623-08.
    1. Hahn G., Revello M.G., Patrone M., Percivalle E., Campanini G., Sarasini A., Wagner M., Gallina A., Milanesi G., Koszinowski U., et al. Human cytomegalovirus ul131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol. 2004;78:10023–10033. doi: 10.1128/JVI.78.18.10023-10033.2004.
    1. Ryckman B.J., Chase M.C., Johnson D.C. Hcmv gh/gl/ul128–131 interferes with virus entry into epithelial cells: Evidence for cell type-specific receptors. Proc. Natl. Acad. Sci. USA. 2008;105:14118–14123. doi: 10.1073/pnas.0804365105.
    1. Sinzger C., Digel M., Jahn G. Cytomegalovirus cell tropism. Curr. Top. Microbiol. Immunol. 2008;325:63–83.
    1. Vanarsdall A.L., Johnson D.C. Human cytomegalovirus entry into cells. Curr. Opin. Virol. 2012;2:37–42. doi: 10.1016/j.coviro.2012.01.001.
    1. Wang D., Shenk T. Human cytomegalovirus ul131 open reading frame is required for epithelial cell tropism. J. Virol. 2005;79:10330–10338. doi: 10.1128/JVI.79.16.10330-10338.2005.
    1. Dolan A., Cunningham C., Hector R.D., Hassan-Walker A.F., Lee L., Addison C., Dargan D.J., McGeoch D.J., Gatherer D., Emery V.C., et al. Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 2004;85:1301–1312. doi: 10.1099/vir.0.79888-0.
    1. Scrivano L., Sinzger C., Nitschko H., Koszinowski U.H., Adler B. Hcmv spread and cell tropism are determined by distinct virus populations. PLoS Pathog. 2011;7:e1001256. doi: 10.1371/journal.ppat.1001256.
    1. Adler B., Scrivano L., Ruzcics Z., Rupp B., Sinzger C., Koszinowski U. Role of human cytomegalovirus ul131a in cell type-specific virus entry and release. J. Gen. Virol. 2006;87:2451–2460. doi: 10.1099/vir.0.81921-0.
    1. Stinski M.F. Sequence of protein synthesis in cells infected by human cytomegalovirus: Early and late virus-induced polypeptides. J. Virol. 1978;26:686–701.
    1. Compton T., Nepomuceno R.R., Nowlin D.M. Human cytomegalovirus penetrates host cells by ph-independent fusion at the cell surface. Virology. 1992;191:387–395. doi: 10.1016/0042-6822(92)90200-9.
    1. Ryckman B.J., Jarvis M.A., Drummond D.D., Nelson J.A., Johnson D.C. Human cytomegalovirus entry into epithelial and endothelial cells depends on genes ul128 to ul150 and occurs by endocytosis and low-ph fusion. J. Virol. 2006;80:710–722. doi: 10.1128/JVI.80.2.710-722.2006.
    1. Sinzger C. Entry route of hcmv into endothelial cells. J. Clin. Virol. 2008;41:174–179. doi: 10.1016/j.jcv.2007.12.002.
    1. Weisblum Y., Panet A., Zakay-Rones Z., Haimov-Kochman R., Goldman-Wohl D., Ariel I., Falk H., Natanson-Yaron S., Goldberg M.D., Gilad R., Lurain N.S., Greenfield C., Yagel S., Wolf D.G. Modeling of human cytomegalovirus maternal-fetal transmission in a novel decidual organ culture. J. Virol. 2011;85:13204–13213. doi: 10.1128/JVI.05749-11.
    1. Bratcher D.F., Bourne N., Bravo F.J., Schleiss M.R., Slaoui M., Myers M.G., Bernstein D.I. Effect of passive antibody on congenital cytomegalovirus infection in guinea pigs. J. Infect. Dis. 1995;172:944–950. doi: 10.1093/infdis/172.4.944.
    1. Schleiss M.R., Bourne N., Stroup G., Bravo F.J., Jensen N.J., Bernstein D.I. Protection against congenital cytomegalovirus infection and disease in guinea pigs, conferred by a purified recombinant glycoprotein b vaccine. J. Infect. Dis. 2004;189:1374–1381. doi: 10.1086/382751.
    1. Straschewski S., Patrone M., Walther P., Gallina A., Mertens T., Frascaroli G. Protein pul128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J. Virol. 2011;85:5150–5158. doi: 10.1128/JVI.02100-10.
    1. Saccoccio F.M., Sauer A.L., Cui X., Armstrong A.E., Habib el S.E., Johnson D.C., Ryckman B.J., Klingelhutz A.J., Adler S.P., McVoy M.A. Peptides from cytomegalovirus ul130 and ul131 proteins induce high titer antibodies that block viral entry into mucosal epithelial cells. Vaccine. 2011;29:2705–2711. doi: 10.1016/j.vaccine.2011.01.079.
    1. Fouts A.E., Chan P., Stephan J.P., Vandlen R., Feierbach B. Antibodies against the gh/gl/ul128/ul130/ul131 complex comprise the majority of the anti-cytomegalovirus (anti-cmv) neutralizing antibody response in cmv hyperimmune globulin. J. Virol. 2012;86:7444–7447. doi: 10.1128/JVI.00467-12.
    1. Lilleri D., Kabanova A., Revello M.G., Percivalle E., Sarasini A., Genini E., Sallusto F., Lanzavecchia A., Corti D., Gerna G. Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gh/gl/pul128–130–131 complex during primary infection. PLoS One. 2013;8:e59863. doi: 10.1371/journal.pone.0059863.
    1. Ohlin M., Sundqvist V.A., Mach M., Wahren B., Borrebaeck C.A. Fine specificity of the human immune response to the major neutralization epitopes expressed on cytomegalovirus gp58/116 (gb), as determined with human monoclonal antibodies. J. Virol. 1993;67:703–710.
    1. Tugizov S., Maidji E., Xiao J., Pereira L. An acidic cluster in the cytosolic domain of human cytomegalovirus glycoprotein b is a signal for endocytosis from the plasma membrane. J. Virol. 1999;73:8677–8688.
    1. Navarro D., Paz P., Tugizov S., Topp K., La Vail J., Pereira L. Glycoprotein b of human cytomegalovirus promotes virion penetration into cells, transmission of infection from cell to cell, and fusion of infected cells. Virology. 1993;197:143–158. doi: 10.1006/viro.1993.1575.
    1. Grazia Revello M., Baldanti F., Percivalle E., Sarasini A., De-Giuli L., Genini E., Lilleri D., Labo N., Gerna G. In vitro selection of human cytomegalovirus variants unable to transfer virus and virus products from infected cells to polymorphonuclear leukocytes and to grow in endothelial cells. J. Gen. Virol. 2001;82:1429–1438.
    1. Maidji E., Percivalle E., Gerna G., Fisher S., Pereira L. Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virology. 2002;304:53–69. doi: 10.1006/viro.2002.1661.
    1. Damsky C.H., Fitzgerald M.L., Fisher S.J. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J. Clin. Invest. 1992;89:210–222. doi: 10.1172/JCI115565.
    1. Pereira L., Hoffman M., Gallo D., Cremer N. Monoclonal antibodies to human cytomegalovirus: Three surface membrane proteins with unique immunological and electrophoretic properties specify cross-reactive determinants. Infect. Immun. 1982;36:924–932.
    1. Iwayama S., Yamamoto T., Furuya T., Kobayashi R., Ikuta K., Hirai K. Intracellular localization and DNA-binding activity of a class of viral early phosphoproteins in human fibroblasts infected with human cytomegalovirus (towne strain) J. Gen. Virol. 1994;75:3309–3318. doi: 10.1099/0022-1317-75-12-3309.
    1. Nis-elements, 4.0. Laboratory Imaging, Ltd.; Prague, Czech Republic: 2011.
    1. Schneider C.A., Rasband W.S., Eliceiri K.W. Nih image to imagej: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089.
    1. Fiji (fiji is just imagej) University of Wisconsin at Madison; Madison, WI, USA: 2011. version 1.0.
    1. Null D., Bimle C., Weisman L., Johnson K., Steichen J., Gratton T., Singh S., Wang E., Asztalos E., Loeffler A.M., et al. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics. 1998;102:531–537. doi: 10.1542/peds.102.3.531.

Source: PubMed

3
S'abonner