Clomiphene citrate, metformin or a combination of both as the first line ovulation induction drug for Asian Indian women with polycystic ovarian syndrome: A randomized controlled trial

Sujata Kar, Smriti Sanchita, Sujata Kar, Smriti Sanchita

Abstract

Aim: To compare clomiphene citrate (CC), metformin or the combination of CC and metformin as the first line ovulation induction drug in Asian Indian women with polycystic ovary syndrome (PCOS).

Methods: One hundred and five newly diagnosed, treatment naive PCOS women were recruited. They were randomized into any of the three groups: Group I (CC 50-150 mg/day), Group II (metformin 1700 mg/day), and Group III (CC + metformin in similar dosage to Groups I and II). Patients underwent follicular monitoring and advice on timed intercourse. The study period was 6 months, or till pregnant, or till CC resistant. Primary outcome studied was live birth rate (LBR). Secondary outcomes were ovulation rate, pregnancy rate, and early pregnancy loss rate.

Results: There was no significant difference among the groups in baseline characteristics and biochemical parameters. LBR was 41.6%, 37.5%, and 28.1%, respectively in Groups III, II, and I. Group III (CC + metformin) had the highest ovulation (83.3%), pregnancy (50%), and LBRs (41.6%). Group II (metformin) was as good as Group I (CC) in all the outcomes. CC + metformin (Group III) had statistically significantly higher ovulation rate as compared to CC alone (Group I) (P = 0.03; odds ratio: 95% confidence interval: 3.888 [1.08-13.997]).

Conclusion: Thus, our study shows that metformin was as good as CC in terms of "LBR" and the combination of CC and metformin gave the highest ovulation and LBR.

Keywords: Clomiphene citrate; metformin; ovulation induction; polycystic ovary syndrome; pregnancy rate.

References

    1. Frank S. Polycystic ovary syndrome. N Engl J Med. 1995;333:833–61.
    1. March W, Moore V, Willson K, Phillips D, Norman R, Davies M. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;2:544–51.
    1. Wild RA. Long-term health consequences of PCOS. Hum Reprod Update. 2002;8:231–41.
    1. Hull MG. Epidemiology of infertility and polycystic ovarian disease: Endocrinological and demographic studies. Gynecol Endocrinol. 1987;1:235–45.
    1. Homburg R, Armar NA, Eshel A, Adams J, Jacobs HS. Influence of serum luteinising hormone concentrations on ovulation, conception, and early pregnancy loss in polycystic ovary syndrome. BMJ. 1988;297:1024–6.
    1. Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12:673–83.
    1. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM Sponsored 3 rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97:28–38.e5.
    1. Imani B, Eijkemans MJ, te Velde ER, Habbema JD, Fauser BC. A nomogram to predict the probability of live birth after clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility. Fertil Steril. 2002;77:91–7.
    1. Kim LH, Taylor AE, Barbieri RL. Insulin sensitizers and polycystic ovary syndrome: Can a diabetes medication treat infertility? Fertil Steril. 2000;73:1097–8.
    1. Moghetti P, Castello R, Negri C, Tosi F, Perrone F, Caputo M, et al. Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: A randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab. 2000;85:139–46.
    1. Fleming R, Hopkinson ZE, Wallace AM, Greer IA, Sattar N. Ovarian function and metabolic factors in women with oligomenorrhea treated with metformin in a randomized double blind placebo-controlled trial. J Clin Endocrinol Metab. 2002;87:569–74.
    1. Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356:551–66.
    1. Costello MF, Eden JA. A systematic review of the reproductive system effects of metformin in patients with polycystic ovary syndrome. Fertil Steril. 2003;79:1–13.
    1. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS) Hum Reprod. 2004;19:41–7.
    1. Hughes E, Collins J, Vandekerckhove P. Clomiphene citrate for ovulation induction in women with oligo-amenorrhoea. Cochrane Database Syst Rev. 2000;2:CD000056.
    1. Gonen Y, Casper RF. Sonographic determination of a possible adverse effect of clomiphene citrate on endometrial growth. Hum Reprod. 1990;5:670–4.
    1. Prasad DS, Kabir Z, Dash AK, Das BC. Abdominal obesity, an independent cardiovascular risk factor in Indian subcontinent: A clinico epidemiological evidence summary. J Cardiovasc Dis Res. 2011;2:199–205.
    1. Kar S. Anthropometric, clinical, and metabolic comparisons of the four Rotterdam PCOS phenotypes: A prospective study of PCOS women. J Hum Reprod Sci. 2013;6:194–200.
    1. DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1991;73:1294–301.
    1. Attia GR, Rainey WE, Carr BR. Metformin directly inhibits androgen production in human thecal cells. Fertil Steril. 2001;76:517–24.
    1. Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med. 1998;338:1876–80.
    1. Velázquez E, Acosta A, Mendoza SG. Menstrual cyclicity after metformin therapy in polycystic ovary syndrome. Obstet Gynecol. 1997;90:392–5.
    1. Ehrmann DA, Cavaghan MK, Imperial J, Sturis J, Rosenfield RL, Polonsky KS. Effects of metformin on insulin secretion, insulin action, and ovarian steroidogenesis in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82:524–30.
    1. Sahin Y, Yirmibes U, Kelestimur F, Aygen E. The effects of metformin on insulin resistance, clomiphene-induced ovulation and pregnancy rates in women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2004;113:214–20.
    1. Zain MM, Jamaluddin R, Ibrahim A, Norman RJ. Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction, achievement of pregnancy, and live birth in Asian women with polycystic ovary syndrome: A randomized controlled trial. Fertil Steril. 2009;91:514–21.
    1. Misso ML, Costello MF, Garrubba M, Wong J, Hart R, Rombauts L, et al. Metformin versus clomiphene citrate for infertility in non-obese women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod Update. 2013;19:2–11.
    1. Palomba S, Orio F, Jr, Falbo A, Manguso F, Russo T, Cascella T, et al. Prospective parallel randomized, double blind, double-dummy controlled clinical trial comparing clomiphene citrate and metformin as the first line treatment for ovulation induction in non obese anovulatory women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:4068–74.
    1. Neveu N, Granger L, St-Michel P, Lavoie HB. Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction and achievement of pregnancy in 154 women with polycystic ovary syndrome. Fertil Steril. 2007;87:113–20.
    1. Ayaz A, Alwan Y, Farooq MU. Efficacy of combined metformin-clomiphene citrate in comparison with clomiphene citrate alone in infertile women with polycystic ovarian syndrome (PCOS) J Med Life. 2013;6:199–201.
    1. Leanza V, Coco L, Grasso F, Leanza G, Zarbo G, Palumbo M. Ovulation induction with clomiphene citrate and metformin in women with polycystic ovary syndrome. Minerva Ginecol. 2014;66:299–301.

Source: PubMed

3
S'abonner