Advanced glycation end products and oxidative stress in type 2 diabetes mellitus

Kerstin Nowotny, Tobias Jung, Annika Höhn, Daniela Weber, Tilman Grune, Kerstin Nowotny, Tobias Jung, Annika Höhn, Daniela Weber, Tilman Grune

Abstract

Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease characterized by insulin resistance and β cell failure leading to elevated blood glucose levels. Hyperglycemia is suggested to be the main cause of diabetic complications, which not only decrease life quality and expectancy, but are also becoming a problem regarding the financial burden for health care systems. Therefore, and to counteract the continually increasing prevalence of diabetes, understanding the pathogenesis, the main risk factors, and the underlying molecular mechanisms may establish a basis for prevention and therapy. In this regard, research was performed revealing further evidence that oxidative stress has an important role in hyperglycemia-induced tissue injury as well as in early events relevant for the development of T2DM. The formation of advanced glycation end products (AGEs), a group of modified proteins and/or lipids with damaging potential, is one contributing factor. On the one hand it has been reported that AGEs increase reactive oxygen species formation and impair antioxidant systems, on the other hand the formation of some AGEs is induced per se under oxidative conditions. Thus, AGEs contribute at least partly to chronic stress conditions in diabetes. As AGEs are not only formed endogenously, but also derive from exogenous sources, i.e., food, they have been assumed as risk factors for T2DM. However, the role of AGEs in the pathogenesis of T2DM and diabetic complications-if they are causal or simply an effect-is only partly understood. This review will highlight the involvement of AGEs in the development and progression of T2DM and their role in diabetic complications.

Figures

Figure 1
Figure 1
“Three lines of antioxidative defense” in mammalian cells, modified according to [5]. The first line contains low molecular antioxidants that can scavenge ROS/reactive particles in a purely competitive way, preventing damage from cellular structures like proteins, nucleobases and lipids. The reaction products are mostly significantly less reactive and may in several cases be restored by cellular systems (like vitamin C and tocopherol in a glutathione (GSH)-consuming manner). The most important and abundant low molecular intracellular scavenger is GSH, thus determining the cellular redox-state, defined as the ratio of GSH to its oxidized form, glutathione disulfide (GSSG). Under normal physiological conditions, this ratio is about 1:1000 (GSSG:GSH) or even higher, providing a strongly reducing cellular environment. The second line of defense contains antioxidative enzymes that are able to convert ROS into less reactive particles. This includes the superoxide dismutases (Cu, ZnSOD and MnSOD) as well as catalase. Further important enzymes are glutathione peroxidases, catalyzing the reaction of peroxides (R-OOH) to hydroxyls (R-OH) via GSH-consumption. Besides catalase, glutathione peroxidases are the most important H2O2-detoxifying enzymes. In this group enzymes are also found, which bind redox-active metals—iron is the most important transition metal in mammalian cells—in an inert form. Otherwise, metals like iron (Fe2+) or copper (Cu+) are able to transfer an electron to H2O2 (Fenton reaction), releasing both OH− and the highly reactive hydroxyl radical (•OH). •OH is able to oxidize virtually every organic molecule. The oxidized forms of those metals (Fe3+/Cu2+) are quickly reduced in the cytosolic environment, fuelling the vicious circle. In the last line of defense is a summary of enzymes that are able to restore oxidatively modified amino acids (only methionine and cysteine), thus preventing proteolytic degradation of the whole damaged protein. If repair is not possible, several proteases are available, that can recognize and remove dysfunctional proteins in a proteolytic manner, preventing their intracellular accumulation. The most important one is the proteasomal system, responsible for the degradation of more than 90% of all (oxidatively) damaged proteins, as well as the cathepsins of the lysosomal system. Other catabolic enzymes might also play some role in these defense lines.
Figure 2
Figure 2
Formation of reactive dicarbonyls and AGEs, modified according to [29]. Reactive dicarbonyls including methylglyoxal, glyoxal and 3-deoxyglucosone are formed through several pathways: the Maillard reaction, the polyol pathway, glycolysis, lipid peroxidation or glucose autoxidation. Dicarbonyl compounds react further to form irreversible products, the so-called AGEs.
Figure 3
Figure 3
Mechanisms of AGEs leading to insulin resistance in insulin-sensitive tissues according to [52,78,79,80,84,85,86]. AGEs are involved in mechanisms contributing to insulin resistance due to direct modification of insulin which alters insulin action resulting in impaired glucose uptake, inhibited insulin clearance or further increased insulin secretion. Furthermore, AGEs may contribute to insulin resistance via increased expression of RAGE and reduced expression of AGER1 and SIRT1. AGEs affect insulin signaling and trigger inflammation via stimulation of PKCα and upregulation of TNFα. SIRT1 depletion causes changes in insulin signaling and induces inflammation.
Figure 4
Figure 4
AGE-induced pathways involved in β cell dysfunction according to [98,100,102,103]. Decreased insulin synthesis and reduced insulin secretion are both involved in β cell failure contributing to hyperglycemia. AGEs reduce phosphorylation (P) and induce acetylation (Ac) of FoxO1, thus, FoxO1 translocates into the nucleus and is protected against proteasomal degradation, respectively. In addition, AGEs induce PDX-1 translocation into the cytoplasm and decrease PDX-1 protein expression, finally affecting insulin gene transcription and insulin synthesis. Regarding insulin secretion, AGEs cause inhibition by activation of iNOS and consequent blocking of cytochrome c oxidase activity and ATP depletion. Moreover, AGEs decrease insulin secretion through alterations in the TCA cycle which limits ATP production. ATP depletion inhibits closure of ATP-dependent potassium channels which leads to reduced membrane depolarization and decrease of intracellular calcium concentration inhibiting insulin secretion. (Arrows illustrate direct interactions; dashed arrows illustrate possible targets of AGEs).
Figure 5
Figure 5
Influence of methylglyoxal-modified collagen on cellular functions relevant to diabetic complications, according to [113,116,119,120]. Cells were cultured on methylglyoxal-modified collagen and the effect of AGE-collagen on cellular functions was studied. Dermal fibroblasts grown on modified collagen increase collagen synthesis. Methylglyoxal-modified collagen reduces cell adhesion and migration of mesangial cells, cardiac fibroblast are less adherent. Myofibroblast differentiation is stimulated in cardiac fibroblasts cultured on modified collagen and modifications of basement membrane collagen causes detachment, cell death and reduced angiogenesis of vascular endothelial cells.

References

    1. International Diabetes Federation . IDF Diabetes Atlas Update Poster. 6th ed. International Diabetes Federation; Brussels, Belgium: 2014.
    1. International Diabetes Federation . IDF Diabetes Atlas. 6th ed. International Diabetes Federation; Brussels, Belgium: 2013.
    1. Morrish N., Wang S.-L., Stevens L., Fuller J., Keen H. Mortality and causes of death in the who multinational study of vascular disease in diabetes. Diabetologia. 2001;44:S14–S21. doi: 10.1007/PL00002934.
    1. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
    1. Jung T., Catalgol B., Grune T. The proteasomal system. Mol. Asp. Med. 2009;30:191–296. doi: 10.1016/j.mam.2009.04.001.
    1. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010;107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.
    1. Abdul-Ghani M.A., DeFronzo R.A. Oxidative stress in type 2 diabetes mellitus. In: Miwa S., Beckman K., Muller F., editors. Oxidative stress in aging. Humana Press; Totowa, NJ, USA: 2008. pp. 191–211.
    1. Henriksen E.J., Diamond-Stanic M.K., Marchionne E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011;51:993–999. doi: 10.1016/j.freeradbiomed.2010.12.005.
    1. Leahy J.L. Pathogenesis of type 2 diabetes mellitus. Arch. Med. Res. 2005;36:197–209. doi: 10.1016/j.arcmed.2005.01.003.
    1. Vlassara H., Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diab. Rep. 2014 doi: 10.1007/s11892-013-0453-1.
    1. Rahbar S. An abnormal hemoglobin in red cells of diabetics. Clin. Chim. Acta. 1968;22:296–298. doi: 10.1016/0009-8981(68)90372-0.
    1. Bunn H.F., Haney D.N., Gabbay K.H., Gallop P.M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem. Biophys. Res. Commun. 1975;67:103–109. doi: 10.1016/0006-291X(75)90289-2.
    1. Hodge J.E. Dehydrated foods—Chemistry of browning reactions in model systems. J. Agric. Food Chem. 1953;1:928–943. doi: 10.1021/jf60015a004.
    1. Fu M.X., Requena J.R., Jenkins A.J., Lyons T.J., Baynes J.W., Thorpe S.R. The advanced glycation end product, nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem. 1996;271:9982–9986. doi: 10.1074/jbc.271.17.9982.
    1. Thornalley P.J., Langborg A., Minhas H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999;344:109–116. doi: 10.1042/0264-6021:3440109.
    1. Wells-Knecht K.J., Zyzak D.V., Litchfield J.E., Thorpe S.R., Baynes J.W. Mechanism of autoxidative glycosylation: Identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995;34:3702–3709. doi: 10.1021/bi00011a027.
    1. Scheijen J.L., Schalkwijk C.G. Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: Evaluation of blood specimen. Clin. Chem. Lab. Med. 2014;52:85–91. doi: 10.1515/cclm-2012-0878.
    1. Al-Abed Y., Bucala R. Nε-carboxymethyllysine formation by direct addition of glyoxal to lysine during the maillard reaction. Bioorg. Med. Chem. Lett. 1995;5:2161–2162. doi: 10.1016/0960-894X(95)00375-4.
    1. Wells-Knecht K.J., Brinkmann E., Baynes J.W. Characterization of an imidazolium salt formed from glyoxal and N.alpha.-hippuryllysine: A model for maillard reaction crosslinks in proteins. J. Org. Chem. 1995;60:6246–6247. doi: 10.1021/jo00125a001.
    1. Glomb M.A., Lang G. Isolation and characterization of glyoxal-arginine modifications. J. Agric. Food Chem. 2001;49:1493–1501. doi: 10.1021/jf001082d.
    1. Thorpe S.R., Baynes J.W. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids. 2003;25:275–281. doi: 10.1007/s00726-003-0017-9.
    1. Ahmed M.U., Brinkmann Frye E., Degenhardt T.P., Thorpe S.R., Baynes J.W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with AGE in human lens proteins. Biochem. J. 1997;324:565–570.
    1. Nagaraj R.H., Shipanova I.N., Faust F.M. Protein cross-linking by the maillard reaction: Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem. 1996;271:19338–19345. doi: 10.1074/jbc.271.32.19338.
    1. Shipanova I.N., Glomb M.A., Nagaraj R.H. Protein modification by methylglyoxal: Chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 1997;344:29–36. doi: 10.1006/abbi.1997.0195.
    1. Henle T., Walter A., Haeßner R., Klostermeyer H. Detection and identification of a protein-bound imidazolone resulting from the reaction of arginine residues and methylglyoxal. Z. Lebensm. Unters. Forsch. 1994;199:55–58. doi: 10.1007/BF01192954.
    1. Portero-Otin M., Nagaraj R.H., Monnier V.M. Chromatographic evidence for pyrraline formation during protein glycation in vitro and in vivo. Biochim. Biophys. Acta. 1995;1247:74–80. doi: 10.1016/0167-4838(94)00209-Y.
    1. Dyer D., Blackledge J., Thorpe S., Baynes J. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J. Biol. Chem. 1991;266:11654–11660.
    1. Jono T., Nagai R., Lin X., Ahmed N., Thornalley P.J., Takeya M., Horiuchi S. Nε-(carboxymethyl) lysine and 3-DG-imidazolone are major AGE structures in protein modification by 3-deoxyglucosone. J. Biochem. 2004;136:351–358. doi: 10.1093/jb/mvh124.
    1. Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001;44:129–146. doi: 10.1007/s001250051591.
    1. Baynes J.W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412. doi: 10.2337/diab.40.4.405.
    1. Nakamura K., Nakazawa Y., Ienaga K. Acid-stable fluorescent advanced glycation end products: Vesperlysines A, B, and C are formed as crosslinked products in the maillard reaction between lysine or proteins with glucose. Biochem. Biophys. Res. Commun. 1997;232:227–230. doi: 10.1006/bbrc.1997.6262.
    1. Pongor S., Ulrich P.C., Bencsath F.A., Cerami A. Aging of proteins: Isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc. Natl. Acad. Sci. USA. 1984;81:2684–2688. doi: 10.1073/pnas.81.9.2684.
    1. Sell D.R., Monnier V.M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J. Biol. Chem. 1989;264:21597–21602.
    1. Poulsen M.W., Hedegaard R.V., Andersen J.M., de Courten B., Bügel S., Nielsen J., Skibsted L.H., Dragsted L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013;60:10–37. doi: 10.1016/j.fct.2013.06.052.
    1. Kilhovd B.K., Berg T.J., Birkeland K.I., Thorsby P., Hanssen K.F. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care. 1999;22:1543–1548. doi: 10.2337/diacare.22.9.1543.
    1. Schleicher E.D., Wagner E., Nerlich A.G. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl) lysine in human tissues in diabetes and aging. J. Clin. Investig. 1997;99:457–468. doi: 10.1172/JCI119180.
    1. Schalkwijk C.G., Baidoshvili A., Stehouwer C.D.A., van Hinsbergh V.W.M., Niessen H.W.M. Increased accumulation of the glycoxidation product Nε-(carboxymethyl)lysine in hearts of diabetic patients: Generation and characterisation of a monoclonal anti-CML antibody. Biochim. Biophys. Acta. 2004;1636:82–89. doi: 10.1016/j.bbalip.2003.07.002.
    1. Kilhovd B.K., Giardino I., Torjesen P.A., Birkeland K.I., Berg T.J., Thornalley P.J., Brownlee M., Hanssen K.F. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism. 2003;52:163–167. doi: 10.1053/meta.2003.50035.
    1. Sell D.R., Carlson E.C., Monnier V.M. Differential effects of type 2 (non-insulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane. Diabetologia. 1993;36:936–941. doi: 10.1007/BF02374476.
    1. Biemel K.M., Friedl D.A., Lederer M.O. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J. Biol. Chem. 2002;277:24907–24915. doi: 10.1074/jbc.M202681200.
    1. Sell D.R., Biemel K.M., Reihl O., Lederer M.O., Strauch C.M., Monnier V.M. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J. Biol. Chem. 2005;280:12310–12315. doi: 10.1074/jbc.M500733200.
    1. Monnier V.M., Sell D.R., Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann. NY Acad. Sci. 2005;1043:567–581. doi: 10.1196/annals.1333.065.
    1. Goldberg T., Cai W., Peppa M., Dardaine V., Baliga B.S., Uribarri J., Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 2004;104:1287–1291. doi: 10.1016/j.jada.2004.05.214.
    1. Assar S., Moloney C., Lima M., Magee R., Ames J. Determination of Nɛ-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids. 2009;36:317–326. doi: 10.1007/s00726-008-0071-4.
    1. Henle T. AGEs in foods: Do they play a role in uremia? Kidney Int. Suppl. 2003:S145–S147. doi: 10.1046/j.1523-1755.63.s84.16.x.
    1. Koschinsky T., He C.J., Mitsuhashi T., Bucala R., Liu C., Buenting C., Heitmann K., Vlassara H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA. 1997;94:6474–6479. doi: 10.1073/pnas.94.12.6474.
    1. Delgado-Andrade C., Tessier F.J., Niquet-Leridon C., Seiquer I., Pilar Navarro M. Study of the urinary and faecal excretion of nepsilon-carboxymethyllysine in young human volunteers. Amino Acids. 2012;43:595–602. doi: 10.1007/s00726-011-1107-8.
    1. Vlassara H., Cai W., Crandall J., Goldberg T., Oberstein R., Dardaine V., Peppa M., Rayfield E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA. 2002;99:15596–15601. doi: 10.1073/pnas.242407999.
    1. Uribarri J., Peppa M., Cai W., Goldberg T., Lu M., He C., Vlassara H. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J. Am. Soc. Nephrol. 2003;14:728–731. doi: 10.1097/01.ASN.0000051593.41395.B9.
    1. Uribarri J., Cai W., Ramdas M., Goodman S., Pyzik R., Chen X., Zhu L., Striker G.E., Vlassara H. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: Potential role of AGER1 and SIRT1. Diabetes Care. 2011;34:1610–1616. doi: 10.2337/dc11-0091.
    1. Uribarri J., Cai W., Peppa M., Goodman S., Ferrucci L., Striker G., Vlassara H. Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007;62:427–433. doi: 10.1093/gerona/62.4.427.
    1. Cai W., Ramdas M., Zhu L., Chen X., Striker G.E., Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and Sirtuin 1. Proc. Natl. Acad. Sci. USA. 2012;109:15888–15893. doi: 10.1073/pnas.1205847109.
    1. Coughlan M.T., Yap F.Y., Tong D.C., Andrikopoulos S., Gasser A., Thallas-Bonke V., Webster D.E., Miyazaki J., Kay T.W., Slattery R.M., et al. Advanced glycation end products are direct modulators of beta-cell function. Diabetes. 2011;60:2523–2532. doi: 10.2337/db10-1033.
    1. Hofmann M.A., Drury S., Fu C., Qu W., Taguchi A., Lu Y., Avila C., Kambham N., Bierhaus A., Nawroth P., et al. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97:889–901. doi: 10.1016/S0092-8674(00)80801-6.
    1. Hori O., Brett J., Slattery T., Cao R., Zhang J., Chen J.X., Nagashima M., Lundh E.R., Vijay S., Nitecki D., et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system. J. Biol. Chem. 1995;270:25752–25761. doi: 10.1074/jbc.270.43.25752.
    1. Chavakis T., Bierhaus A., Al-Fakhri N., Schneider D., Witte S., Linn T., Nagashima M., Morser J., Arnold B., Preissner K.T., et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: A novel pathway for inflammatory cell recruitment. J. Exp. Med. 2003;198:1507–1515. doi: 10.1084/jem.20030800.
    1. Grimm S., Ott C., Horlacher M., Weber D., Hohn A., Grune T. Advanced-glycation-end-product-induced formation of immunoproteasomes: Involvement of RAGE and Jak2/Stat1. Biochem. J. 2012;448:127–139. doi: 10.1042/BJ20120298.
    1. Hirose A., Tanikawa T., Mori H., Okada Y., Tanaka Y. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett. 2010;584:61–66. doi: 10.1016/j.febslet.2009.11.082.
    1. Tanikawa T., Okada Y., Tanikawa R., Tanaka Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 mapk. J. Vasc. Res. 2009;46:572–580. doi: 10.1159/000226225.
    1. Li J.H., Wang W., Huang X.R., Oldfield M., Schmidt A.M., Cooper M.E., Lan H.Y. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am. J. Pathol. 2004;164:1389–1397. doi: 10.1016/S0002-9440(10)63225-7.
    1. Guimaraes E.L., Empsen C., Geerts A., van Grunsven L.A. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J. Hepatol. 2010;52:389–397. doi: 10.1016/j.jhep.2009.12.007.
    1. Zhang M., Kho A.L., Anilkumar N., Chibber R., Pagano P.J., Shah A.M., Cave A.C. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: Involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation. 2006;113:1235–1243. doi: 10.1161/CIRCULATIONAHA.105.581397.
    1. Bierhaus A., Schiekofer S., Schwaninger M., Andrassy M., Humpert P.M., Chen J., Hong M., Luther T., Henle T., Kloting I., et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes. 2001;50:2792–2808. doi: 10.2337/diabetes.50.12.2792.
    1. Libermann T.A., Baltimore D. Activation of interleukin-6 gene expression through the NF-κB transcription factor. Mol. Cell. Biol. 1990;10:2327–2334.
    1. Ueda A., Ishigatsubo Y., Okubo T., Yoshimura T. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene: Cooperation of two NF-κB sites and NF-κB/Rel subunit specificity. J. Biol. Chem. 1997;272:31092–31099. doi: 10.1074/jbc.272.49.31092.
    1. Li J., Schmidt A.M. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J. Biol. Chem. 1997;272:16498–16506. doi: 10.1074/jbc.272.26.16498.
    1. Ott C., Jacobs K., Haucke E., Navarrete Santos A., Grune T., Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–429. doi: 10.1016/j.redox.2013.12.016.
    1. Grimm S., Ernst L., Grotzinger N., Hohn A., Breusing N., Reinheckel T., Grune T. Cathepsin D is one of the major enzymes involved in intracellular degradation of AGE-modified proteins. Free Radic. Res. 2010;44:1013–1026. doi: 10.3109/10715762.2010.495127.
    1. Grimm S., Horlacher M., Catalgol B., Hoehn A., Reinheckel T., Grune T. Cathepsins D and L reduce the toxicity of advanced glycation end products. Free Radic. Biol. Med. 2012;52:1011–1023. doi: 10.1016/j.freeradbiomed.2011.12.021.
    1. Cai W., Torreggiani M., Zhu L., Chen X., He J.C., Striker G.E., Vlassara H. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: Implications for vascular disease. Am. J. Physiol. Cell Physiol. 2010;298:C624–C634. doi: 10.1152/ajpcell.00463.2009.
    1. Lu C., He J.C., Cai W., Liu H., Zhu L., Vlassara H. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc. Natl. Acad. Sci. USA. 2004;101:11767–11772. doi: 10.1073/pnas.0401588101.
    1. Vlassara H., Cai W., Goodman S., Pyzik R., Yong A., Chen X., Zhu L., Neade T., Beeri M., Silverman J.M., et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: Role of the antiinflammatory AGE receptor-1. J. Clin. Endocrinol. Metab. 2009;94:4483–4491. doi: 10.1210/jc.2009-0089.
    1. Torreggiani M., Liu H., Wu J., Zheng F., Cai W., Striker G., Vlassara H. Advanced glycation end product receptor-1 transgenic mice are resistant to inflammation, oxidative stress, and post-injury intimal hyperplasia. Am. J. Pathol. 2009;175:1722–1732. doi: 10.2353/ajpath.2009.090138.
    1. Zimmet P., Alberti K.G.M.M., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–787. doi: 10.1038/414782a.
    1. Tan K.C., Shiu S.W., Wong Y., Tam X. Serum advanced glycation end products (AGEs) are associated with insulin resistance. Diabetes Metab. Res. Rev. 2011;27:488–492. doi: 10.1002/dmrr.1188.
    1. Matthews D., Hosker J., Rudenski A., Naylor B., Treacher D., Turner R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Tahara N., Yamagishi S., Matsui T., Takeuchi M., Nitta Y., Kodama N., Mizoguchi M., Imaizumi T. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc. Ther. 2012;30:42–48. doi: 10.1111/j.1755-5922.2010.00177.x.
    1. Naitoh T., Kitahara M., Tsuruzoe N. Tumor necrosis factor-alpha is induced through phorbol ester—And glycated human albumin-dependent pathway in Thp-1 cells. Cell Signal. 2001;13:331–334. doi: 10.1016/S0898-6568(01)00152-8.
    1. Miele C., Riboulet A., Maitan M.A., Oriente F., Romano C., Formisano P., Giudicelli J., Beguinot F., van Obberghen E. Human glycated albumin affects glucose metabolism in l6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. J. Biol. Chem. 2003;278:47376–47387. doi: 10.1074/jbc.M301088200.
    1. Cassese A., Esposito I., Fiory F., Barbagallo A.P., Paturzo F., Mirra P., Ulianich L., Giacco F., Iadicicco C., Lombardi A., et al. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs. J. Biol. Chem. 2008;283:36088–36099. doi: 10.1074/jbc.M801698200.
    1. Borst S. The role of TNF-α in insulin resistance. Endocrine. 2004;23:177–182. doi: 10.1385/ENDO:23:2-3:177.
    1. Nakajima K., Yamauchi K., Shigematsu S., Ikeo S., Komatsu M., Aizawa T., Hashizume K. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, Hepg2 cells. J. Biol. Chem. 2000;275:20880–20886. doi: 10.1074/jbc.M905410199.
    1. Ravichandran L.V., Esposito D.L., Chen J., Quon M.J. Protein kinase c-ζ phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J. Biol. Chem. 2001;276:3543–3549. doi: 10.1074/jbc.M007231200.
    1. Boyd A.C., Abdel-Wahab Y.H., McKillop A.M., McNulty H., Barnett C.R., O’Harte F.P., Flatt P.R. Impaired ability of glycated insulin to regulate plasma glucose and stimulate glucose transport and metabolism in mouse abdominal muscle. Biochim. Biophys. Acta. 2000;1523:128–134. doi: 10.1016/S0304-4165(00)00113-6.
    1. Hunter S.J., Boyd A.C., O’Harte F.P., McKillop A.M., Wiggam M.I., Mooney M.H., McCluskey J.T., Lindsay J.R., Ennis C.N., Gamble R., et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans. Diabetes. 2003;52:492–498. doi: 10.2337/diabetes.52.2.492.
    1. Jia X., Olson D.J., Ross A.R., Wu L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB J. 2006;20:1555–1557. doi: 10.1096/fj.05-5478fje.
    1. Abdel-Wahab Y.H.A., O’Harte F.P., Ratcliff H., McClenaghan N.H., Barnett C.R., Flatt P.R. Glycation of insulin in the islets of langerhans of normal and diabetic animals. Diabetes. 1996;45:1489–1496. doi: 10.2337/diab.45.11.1489.
    1. Abdel-Wahab Y.H.A., O’Harte F.P.M., Barnett C.R., Flatt P.R. Characterization of insulin glycation in insulin-secreting cells maintained in tissue culture. J. Endocrinol. 1997;152:59–67. doi: 10.1677/joe.0.1520059.
    1. O’Harte F.P., Hojrup P., Barnett C.R., Flatt P.R. Identification of the site of glycation of human insulin. Peptides. 1996;17:1323–1330. doi: 10.1016/S0196-9781(96)00231-8.
    1. Krause R., Kühn J., Penndorf I., Knoll K., Henle T. N-terminal pyrazinones: A new class of peptide-bound advanced glycation end-products. Amino Acids. 2004;27:9–18. doi: 10.1007/s00726-004-0102-8.
    1. Unoki-Kubota H., Yamagishi S., Takeuchi M., Bujo H., Saito Y. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice. Protein Pept. Lett. 2010;17:1177–1181. doi: 10.2174/092986610791760423.
    1. Guo Q., Mori T., Jiang Y., Hu C., Osaki Y., Yoneki Y., Sun Y., Hosoya T., Kawamata A., Ogawa S., et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in sprague-dawley rats. J. Hypertens. 2009;27:1664–1671. doi: 10.1097/HJH.0b013e32832c419a.
    1. Liang F., Kume S., Koya D. Sirt1 and insulin resistance. Nat. Rev. Endocrinol. 2009;5:367–373. doi: 10.1038/nrendo.2009.101.
    1. Lim M., Park L., Shin G., Hong H., Kang I., Park Y. Induction of apoptosis of beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann. NY Acad. Sci. 2008;1150:311–315. doi: 10.1196/annals.1447.011.
    1. Luciano Viviani G., Puddu A., Sacchi G., Garuti A., Storace D., Durante A., Monacelli F., Odetti P. Glycated fetal calf serum affects the viability of an insulin-secreting cell line in vitro. Metabolism. 2008;57:163–169. doi: 10.1016/j.metabol.2007.08.020.
    1. Zhu Y., Shu T., Lin Y., Wang H., Yang J., Shi Y., Han X. Inhibition of the receptor for advanced glycation endproducts (RAGE) protects pancreatic beta-cells. Biochem. Biophys. Res. Commun. 2011;404:159–165. doi: 10.1016/j.bbrc.2010.11.085.
    1. Lin N., Zhang H., Su Q. Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress. Diabetes Metab. 2012;38:250–257. doi: 10.1016/j.diabet.2012.01.003.
    1. Zhao Z., Zhao C., Zhang X.H., Zheng F., Cai W., Vlassara H., Ma Z.A. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome C oxidase and adenosine triphosphate synthesis. Endocrinology. 2009;150:2569–2576. doi: 10.1210/en.2008-1342.
    1. Jitrapakdee S., Wutthisathapornchai A., Wallace J.C., MacDonald M.J. Regulation of insulin secretion: Role of mitochondrial signalling. Diabetologia. 2010;53:1019–1032. doi: 10.1007/s00125-010-1685-0.
    1. Hachiya H., Miura Y., Inoue K., Park K.H., Takeuchi M., Kubota K. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic beta-cells. J. Hepatobiliary Pancreat. Sci. 2014;21:134–141. doi: 10.1002/jhbp.12.
    1. Eto K., Tsubamoto Y., Terauchi Y., Sugiyama T., Kishimoto T., Takahashi N., Yamauchi N., Kubota N., Murayama S., Aizawa T., et al. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. 1999;283:981–985. doi: 10.1126/science.283.5404.981.
    1. Shu T., Zhu Y., Wang H., Lin Y., Ma Z., Han X. AGEs decrease insulin synthesis in pancreatic beta-cell by repressing Pdx-1 protein expression at the post-translational level. PLOS ONE. 2011;6:e18782. doi: 10.1371/journal.pone.0018782.
    1. Puddu A., Storace D., Odetti P., Viviani G.L. Advanced glycation end-products affect transcription factors regulating insulin gene expression. Biochem. Biophys. Res. Commun. 2010;395:122–125. doi: 10.1016/j.bbrc.2010.03.152.
    1. Wautier M., Massin P., Guillausseau P., Huijberts M., Levy B., Boulanger E., Laloi-Michelin M., Wautier J. N(carboxymethyl) lysine as a biomarker for microvascular complications in type 2 diabetic patients. Diabetes Metab. 2003;29:44–52. doi: 10.1016/S1262-3636(07)70006-X.
    1. Boehm B., Schilling S., Rosinger S., Lang G., Lang G., Kientsch-Engel R., Stahl P. Elevated serum levels of Nε-carboxymethyl-lysine, an advanced glycation end product, are associated with proliferative diabetic retinopathy and macular oedema. Diabetologia. 2004;47:1376–1379. doi: 10.1007/s00125-004-1455-y.
    1. Fosmark D.S., Torjesen P.A., Kilhovd B.K., Berg T.J., Sandvik L., Hanssen K.F., Agardh C.-D., Agardh E. Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabolism. 2006;55:232–236. doi: 10.1016/j.metabol.2005.08.017.
    1. Aso Y., Inukai T., Tayama K., Takemura Y. Serum concentrations of advanced glycation endproducts are associated with the development of atherosclerosis as well as diabetic microangiopathy in patients with type 2 diabetes. Acta Diabetol. 2000;37:87–92. doi: 10.1007/s005920070025.
    1. Ono Y., Aoki S., Ohnishi K., Yasuda T., Kawano K., Tsukada Y. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res. Clin. Pract. 1998;41:131–137. doi: 10.1016/S0168-8227(98)00074-6.
    1. Kiuchi K., Nejima J., Takano T., Ohta M., Hashimoto H. Increased serum concentrations of advanced glycation end products: A marker of coronary artery disease activity in type 2 diabetic patients. Heart. 2001;85:87–91. doi: 10.1136/heart.85.1.87.
    1. Busch M., Franke S., Wolf G., Brandstädt A., Ott U., Gerth J., Hunsicker L.G., Stein G. The advanced glycation end product Nε-carboxymethyllysine is not a predictor of cardiovascular events and renal outcomes in patients with type 2 diabetic kidney disease and hypertension. Am. J. Kidney Dis. 2006;48:571–579. doi: 10.1053/j.ajkd.2006.07.009.
    1. Hanssen N.M., Engelen L., Ferreira I., Scheijen J.L., Huijberts M.S., van Greevenbroek M.M., van der Kallen C.J., Dekker J.M., Nijpels G., Stehouwer C.D. Plasma levels of advanced glycation endproducts Nε-(carboxymethyl) lysine, Nε-(carboxyethyl) lysine, and pentosidine are not independently associated with cardiovascular disease in individuals with or without type 2 diabetes: The hoorn and codam studies. J. Clin. Endocrinol. Metab. 2013;98:E1369–E1373. doi: 10.1210/jc.2013-1068.
    1. Hanssen N.M., Beulens J.W., van Dieren S., Scheijen J.L., Spijkerman A.M., van der Schouw Y.T., Stehouwer C.D., Schalkwijk C.G. Plasma advanced glycation endproducts are associated with incident cardiovascular events in individuals with type 2 diabetes: A case-cohort study with a median follow-up of 10 years (EPIC-NL) Diabetes. 2014;64:257–265. doi: 10.2337/db13-1864.
    1. Dobler D., Ahmed N., Song L., Eboigbodin K.E., Thornalley P.J. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes. 2006;55:1961–1969. doi: 10.2337/db05-1634.
    1. Chong S.A., Lee W., Arora P.D., Laschinger C., Young E.W., Simmons C.A., Manolson M., Sodek J., McCulloch C.A. Methylglyoxal inhibits the binding step of collagen phagocytosis. J. Biol. Chem. 2007;282:8510–8520. doi: 10.1074/jbc.M609859200.
    1. Nowotny K., Grune T. Degradation of oxidized and glycoxidized collagen: Role of collagen cross-linking. Arch. Biochem. Biophys. 2014;542:56–64. doi: 10.1016/j.abb.2013.12.007.
    1. Yuen A., Laschinger C., Talior I., Lee W., Chan M., Birek J., Young E.W., Sivagurunathan K., Won E., Simmons C.A., et al. Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biol. 2010;29:537–548. doi: 10.1016/j.matbio.2010.04.004.
    1. Talior-Volodarsky I., Arora P.D., Wang Y., Zeltz C., Connelly K.A., Gullberg D., McCulloch C.A. Glycated collagen induces alpha11 integrin expression through TGF-beta2 and Smad3. J. Cell. Physiol. 2015 in press.
    1. Talior-Volodarsky I., Connelly K.A., Arora P.D., Gullberg D., McCulloch C.A. Alpha11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy. Cardiovasc. Res. 2012;96:265–275. doi: 10.1093/cvr/cvs259.
    1. Pozzi A., Zent R., Chetyrkin S., Borza C., Bulus N., Chuang P., Chen D., Hudson B., Voziyan P. Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions. J. Am. Soc. Nephrol. 2009;20:2119–2125. doi: 10.1681/ASN.2008080900.
    1. Sassi-Gaha S., Loughlin D.T., Kappler F., Schwartz M.L., Su B., Tobia A.M., Artlett C.M. Two dicarbonyl compounds, 3-deoxyglucosone and methylglyoxal, differentially modulate dermal fibroblasts. Matrix Biol. 2010;29:127–134. doi: 10.1016/j.matbio.2009.09.007.
    1. Charonis A.S., Tsilibary E.C., Saku T., Furthmayr H. Inhibition of laminin self-assembly and interaction with type IV collagen by antibodies to the terminal domain of the long arm. J. Cell Biol. 1986;103:1689–1697. doi: 10.1083/jcb.103.5.1689.
    1. Haitoglou C.S., Tsilibary E.C., Brownlee M., Charonis A.S. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J. Biol. Chem. 1992;267:12404–12407.
    1. Cohen M.P., Ku L. Inhibition of fibronectin binding to matrix components by nonenzymatic glycosylation. Diabetes. 1984;33:970–974. doi: 10.2337/diab.33.10.970.
    1. Liu B., Bhat M., Padival A.K., Smith D.G., Nagaraj R.H. Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes. Investig. Ophthalmol. Vis. Sci. 2004;45:1983–1995. doi: 10.1167/iovs.03-0995.
    1. Duran-Jimenez B., Dobler D., Moffatt S., Rabbani N., Streuli C.H., Thornalley P.J., Tomlinson D.R., Gardiner N.J. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes. 2009;58:2893–2903. doi: 10.2337/db09-0320.
    1. Collaboration E.R.F. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9.
    1. Kilhovd B.K., Juutilainen A., Lehto S., Rönnemaa T., Torjesen P.A., Hanssen K.F., Laakso M. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia. 2007;50:1409–1417. doi: 10.1007/s00125-007-0687-z.
    1. Meerwaldt R., Lutgers H.L., Links T.P., Graaff R., Baynes J.W., Gans R.O.B., Smit A.J. Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care. 2007;30:107–112. doi: 10.2337/dc06-1391.
    1. Meerwaldt R., Graaff R., Oomen P., Links T., Jager J., Alderson N., Thorpe S., Baynes J., Gans R., Smit A. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47:1324–1330. doi: 10.1007/s00125-004-1451-2.
    1. Del Turco S., Basta G. An update on advanced glycation endproducts and atherosclerosis. BioFactors. 2012;38:266–274. doi: 10.1002/biof.1018.
    1. Kume S., Takeya M., Mori T., Araki N., Suzuki H., Horiuchi S., Kodama T., Miyauchi Y., Takahashi K. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am. J. Pathol. 1995;147:654–667.
    1. Nerlich A.G., Schleicher E.D. Nε-(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress. Atherosclerosis. 1999;144:41–47. doi: 10.1016/S0021-9150(99)00038-6.
    1. Zhou Y.J., Wang J.H., Zhang J. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis. Biochem. Biophys. Res. Communi. 2006;344:658–666. doi: 10.1016/j.bbrc.2006.03.167.
    1. Li Y., Li J., Cui L., Lai Y., Yao Y., Zhang Y., Pang X., Wang J., Liu X. Inhibitory effect of atorvastatin on AGE-induced HCAEC apoptosis by upregulating HSF-1 protein. Int. J. Biol. Macromol. 2013;57:259–264. doi: 10.1016/j.ijbiomac.2013.03.035.
    1. Chen J., Song M., Yu S., Gao P., Yu Y., Wang H., Huang L. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol. Cell. Biochem. 2010;335:137–146. doi: 10.1007/s11010-009-0250-y.
    1. Inagaki Y., Yamagishi S., Okamoto T., Takeuchi M., Amano S. Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia. 2003;46:284–287.
    1. Vlassara H., Fuh H., Donnelly T., Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol. Med. 1995;1:447–456.
    1. Schmidt A.M., Hori O., Chen J.X., Li J.F., Crandall J., Zhang J., Cao R., Yan S.D., Brett J., Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Investig. 1995;96:1395–1403. doi: 10.1172/JCI118175.
    1. Ishibashi Y., Matsui T., Takeuchi M., Yamagishi S.-I. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 2010;391:1405–1408. doi: 10.1016/j.bbrc.2009.12.075.
    1. Ishibashi Y., Matsui T., Maeda S., Higashimoto Y., Yamagishi S.-I. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc. Diabetol. 2013;12:125–125. doi: 10.1186/1475-2840-12-125.
    1. Yamagishi S., Fujimori H., Yonekura H., Yamamoto Y., Yamamoto H. Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia. 1998;41:1435–1441. doi: 10.1007/s001250051089.
    1. Quehenberger P., Bierhaus A., Fasching P., Muellner C., Klevesath M., Hong M., Stier G., Sattler M., Schleicher E., Speiser W., et al. Endothelin 1 transcription is controlled by nuclear factor-κB in AGE-stimulated cultured endothelial cells. Diabetes. 2000;49:1561–1570. doi: 10.2337/diabetes.49.9.1561.
    1. Zhang L., Zalewski A., Liu Y., Mazurek T., Cowan S., Martin J.L., Hofmann S.M., Vlassara H., Shi Y. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108:472–478. doi: 10.1161/01.CIR.0000080378.96063.23.
    1. Bucala R., Tracey K.J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Investig. 1991;87:432–438. doi: 10.1172/JCI115014.
    1. Xu B., Chibber R., Ruggiero D., Kohner E., Ritter J., Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J. 2003;17:1289–1291. doi: 10.1096/fj.03-0310com.
    1. Chakravarthy U., Hayes R.G., Stitt A.W., McAuley E., Archer D.B. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes. 1998;47:945–952. doi: 10.2337/diabetes.47.6.945.
    1. Barbato J.E., Tzeng E. Nitric oxide and arterial disease. J. Vasc. Surg. 2004;40:187–193. doi: 10.1016/j.jvs.2004.03.043.
    1. Yamagishi S., Amano S., Inagaki Y., Okamoto T., Koga K., Sasaki N., Yamamoto H., Takeuchi M., Makita Z. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem. Biophys. Res. Commun. 2002;290:973–978. doi: 10.1006/bbrc.2001.6312.
    1. Stitt A.W., Hughes S.J., Canning P., Lynch O., Cox O., Frizzell N., Thorpe S.R., Cotter T.G., Curtis T.M., Gardiner T.A. Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia. 2004;47:1735–1746. doi: 10.1007/s00125-004-1523-3.
    1. Antonetti D. Eye vessels saved by rescuing their pericyte partners. Nat. Med. 2009;15:1248–1249. doi: 10.1038/nm1109-1248.
    1. Moore T.C., Moore J.E., Kaji Y., Frizzell N., Usui T., Poulaki V., Campbell I.L., Stitt A.W., Gardiner T.A., Archer D.B., et al. The role of advanced glycation end products in retinal microvascular leukostasis. Investig. Ophthalmol. Vis. Sci. 2003;44:4457–4464. doi: 10.1167/iovs.02-1063.
    1. Lu M., Kuroki M., Amano S., Tolentino M., Keough K., Kim I., Bucala R., Adamis A.P. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J. Clin. Investig. 1998;101:1219–1224. doi: 10.1172/JCI1277.
    1. Stitt A.W., Bhaduri T., McMullen C.B., Gardiner T.A., Archer D.B. Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol. Cell Biol. Res. Commun. 2000;3:380–388. doi: 10.1006/mcbr.2000.0243.
    1. Mamputu J.C., Renier G. Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of gliclazide. J. Diabetes Complicat. 2002;16:284–293. doi: 10.1016/S1056-8727(01)00229-X.
    1. Yamagishi S., Inagaki Y., Okamoto T., Amano S., Koga K., Takeuchi M., Makita Z. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J. Biol. Chem. 2002;277:20309–20315. doi: 10.1074/jbc.M202634200.
    1. Ghayur M.N., Krepinsky J.C., Janssen L.J. Contractility of the renal glomerulus and mesangial cells: Lingering doubts and strategies for the future. Med. Hypotheses Res. 2008;4:1–9.
    1. Yamagishi S., Inagaki Y., Okamoto T., Amano S., Koga K., Takeuchi M. Advanced glycation end products inhibit de novo protein synthesis and induce TGF-beta overexpression in proximal tubular cells. Kidney Int. 2003;63:464–473. doi: 10.1046/j.1523-1755.2003.00752.x.
    1. Throckmorton D.C., Brogden A.P., Min B., Rasmussen H., Kashgarian M. PDGF and TGF-bold beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int. 1995;48:111–117. doi: 10.1038/ki.1995.274.
    1. Yang C.W., Vlassara H., Peten E.P., He C.J., Striker G.E., Striker L.J. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc. Natl. Acad. Sci. USA. 1994;91:9436–9440. doi: 10.1073/pnas.91.20.9436.
    1. Fukami K., Ueda S., Yamagishi S., Kato S., Inagaki Y., Takeuchi M., Motomiya Y., Bucala R., Iida S., Tamaki K., et al. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. Kidney Int. 2004;66:2137–2147. doi: 10.1111/j.1523-1755.2004.66004.x.
    1. Oldfield M.D., Bach L.A., Forbes J.M., Nikolic-Paterson D., McRobert A., Thallas V., Atkins R.C., Osicka T., Jerums G., Cooper M.E. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE) J. Clin. Investig. 2001;108:1853–1863. doi: 10.1172/JCI11951.
    1. Burns W.C., Twigg S.M., Forbes J.M., Pete J., Tikellis C., Thallas-Bonke V., Thomas M.C., Cooper M.E., Kantharidis P. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: Implications for diabetic renal disease. J. Am. Soc. Nephrol. 2006;17:2484–2494. doi: 10.1681/ASN.2006050525.
    1. Roestenberg P., van Nieuwenhoven F.A., Wieten L., Boer P., Diekman T., Tiller A.M., Wiersinga W.M., Oliver N., Usinger W., Weitz S., et al. Connective tissue growth factor is increased in plasma of type 1 diabetic patients with nephropathy. Diabetes Care. 2004;27:1164–1170. doi: 10.2337/diacare.27.5.1164.
    1. Chung A.C.K., Zhang H., Kong Y.-Z., Tan J.-J., Huang X.R., Kopp J.B., Lan H.Y. Advanced glycation end-products induce tubular CTGF via TGF-β-independent Smad3 signaling. J. Am. Soc. Nephrol. 2010;21:249–260. doi: 10.1681/ASN.2009010018.
    1. Thornalley P.J. Dietary AGEs and ALEs and risk to human health by their interaction with the receptor for advanced glycation endproducts (RAGE)—An introduction. Mol. Nutr. Food Res. 2007;51:1107–1110. doi: 10.1002/mnfr.200700017.
    1. Ramasamy R., Yan S.F., Schmidt A.M. Arguing for the motion: Yes, rage is a receptor for advanced glycation endproducts. Mol. Nutr. Food Res. 2007;51:1111–1115. doi: 10.1002/mnfr.200700008.
    1. Heizmann C.W. The mechanism by which dietary AGEs are a risk to human health is via their interaction with RAGE: Arguing against the motion. Mol. Nutr. Food Res. 2007;51:1116–1119. doi: 10.1002/mnfr.200600284.

Source: PubMed

3
S'abonner