Associations of osteopontin and NT-proBNP with circulating miRNA levels in acute coronary syndrome

Lydia Coulter Kwee, Megan L Neely, Elizabeth Grass, Simon G Gregory, Matthew T Roe, E Magnus Ohman, Keith A A Fox, Harvey D White, Paul W Armstrong, Lenden M Bowsman, Joseph V Haas, Kevin L Duffin, Mark Y Chan, Svati H Shah, Lydia Coulter Kwee, Megan L Neely, Elizabeth Grass, Simon G Gregory, Matthew T Roe, E Magnus Ohman, Keith A A Fox, Harvey D White, Paul W Armstrong, Lenden M Bowsman, Joseph V Haas, Kevin L Duffin, Mark Y Chan, Svati H Shah

Abstract

The genomic regulatory networks underlying the pathogenesis of non-ST-segment elevation acute coronary syndrome (NSTE-ACS) are incompletely understood. As intermediate traits, protein biomarkers report on underlying disease severity and prognosis in NSTE-ACS. We hypothesized that integration of dense microRNA (miRNA) profiling with biomarker measurements would highlight potential regulatory pathways that underlie the relationships between prognostic biomarkers, miRNAs, and cardiovascular phenotypes. We performed miRNA sequencing using whole blood from 186 patients from the TRILOGY-ACS trial. Seven circulating prognostic biomarkers were measured: NH2-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein, osteopontin (OPN), myeloperoxidase, growth differentiation factor 15, monocyte chemoattractant protein, and neopterin. We tested miRNAs for association with each biomarker with generalized linear models and controlled the false discovery rate at 0.05. Ten miRNAs, including known cardiac-related miRNAs 25-3p and 423-3p, were associated with NT-proBNP levels (min. P = 7.5 × 10-4) and 48 miRNAs, including cardiac-related miRNAs 378a-3p, 20b-5p and 320a, -b, and -d, were associated with OPN levels (min. P = 1.6 × 10-6). NT-proBNP and OPN were also associated with time to cardiovascular death, myocardial infarction (MI), or stroke in the sample. By integrating large-scale miRNA profiling with circulating biomarkers as intermediate traits, we identified associations of known cardiac-related and novel miRNAs with two prognostic biomarkers and identified potential genomic networks regulating these biomarkers. These results, highlighting plausible biological pathways connecting miRNAs with biomarkers and outcomes, may inform future studies seeking to delineate genomic pathways underlying NSTE-ACS outcomes.

Keywords: acute coronary syndrome; biomarkers; microRNA.

Conflict of interest statement

The TRILOGY-ACS Advanced Biomarker SubStudy was supported by Eli Lilly and Company (Indianapolis, Indiana). M. Chan reports receiving a research grant from Eli Lilly. M. T. Roe reports receiving research grants from Eli Lilly, Sanofi-Aventis, Daiichi Sankyo, Amgen, and the Familial Hypercholesterolemia Foundation, and consulting/advisory board/other payments from Eli Lilly, Janssen, Elsevier, AstraZeneca, Merck, Amgen, and Bristol-Myers Squibb. S. G. Goodman reports receiving research grants from Daiichi Sankyo, Eli Lilly, AstraZeneca, Bristol-Myers Squibb, and Sanofi-Aventis, and consulting payments/honoraria from Eli Lilly, AstraZeneca, and Sanofi-Aventis. K. A. A. Fox reports receiving research grants from AstraZeneca and the British Heart Foundation. P. W. Armstrong reports receiving research grants from Boehringer Ingelheim, Merck Sharp & Dohme, GlaxoSmithKline, Amylin, Merck, Sanofi-Aventis, and Regado, and consulting/advisory board payments from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck, Axio/Orexigen, Eli Lilly, Bayer, and Hoffman-La Roche. H. D. White reports receiving consulting/advisory board payments from AstraZeneca, Merck Sharpe & Dohme, Roche, and Regado Biosciences, and research grants from Sanofi-Aventis, Eli Lilly, The Medicines Company, NIH, Roche, Merck Sharpe & Dohme, AstraZeneca, GlaxoSmithKline, and Daiichi Sankyo Pharma Development. E. M. Ohman reports receiving research grants from Daiichi Sankyo, Eli Lilly, and Gilead, and consulting/advisory board payments from AstraZeneca, Daiichi Sankyo, Eli Lilly, Gilead, Pozen, The Medicines Company, WebMD, Abiomed, Sanofi- Aventis, and Janssen. L. M. Bowsman, J. V. Haas, and K. L. Duffin are employees of Eli Lilly. All other authors report no conflicts of interest.

Figures

Fig. 1.
Fig. 1.
Consort flow diagram for the analysis cohort.
Fig. 2.
Fig. 2.
Heat maps of differential microRNA (miRNA) expression across biomarker levels. A: miRNA fold change estimates were standardized across each biomarker independently: hs-CRP, high-sensitivity C-reactive protein; OPN, osteopontin; NT-proBNP, NH2-terminal pro B-type natriuretic peptide; GDF-15, growth differentiation factor 15; neopterin; MCP1, monocyte chemoattractant protein; and MPO, myeloperoxidase. Individual miRNAs are displayed on the y-axis. B: unadjusted –log10P values for each generalized linear model association analysis are shown. MiRNAs are in the same order as in A.

References

    1. Arking DE, Khera A, Xing C, Kao WH, Post W, Boerwinkle E, Chakravarti A. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS One 4: e4333, 2009. doi:10.1371/journal.pone.0004333.
    1. Avlas O, Bragg A, Fuks A, Nicholson JD, Farkash A, Porat E, Aravot D, Levy-Drummer RS, Cohen C, Shainberg A, Arad M, Hochhauser E. TLR4 Expression Is Associated with Left Ventricular Dysfunction in Patients Undergoing Coronary Artery Bypass Surgery. PLoS One 10: e0120175, 2015. doi:10.1371/journal.pone.0120175.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297, 2004. doi:10.1016/S0092-8674(04)00045-5.
    1. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J R Stat Soc B 57: 289–300, 1995. doi:10.1111/j.2517-6161.1995.tb02031.x.
    1. Boudreau RL, Jiang P, Gilmore BL, Spengler RM, Tirabassi R, Nelson JA, Ross CA, Xing Y, Davidson BL. Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 81: 294–305, 2014. doi:10.1016/j.neuron.2013.10.062.
    1. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol 3: e85, 2005. doi:10.1371/journal.pbio.0030085.
    1. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7: 147–154, 2009. doi:10.1016/S1672-0229(08)60044-3.
    1. Chan MY, Sun JL, Newby LK, Shaw LK, Lin M, Peterson ED, Califf RM, Kong DF, Roe MT. Long-term mortality of patients undergoing cardiac catheterization for ST-elevation and non-ST-elevation myocardial infarction. Circulation 119: 3110–3117, 2009. doi:10.1161/CIRCULATIONAHA.108.799981.
    1. Chin CT, Roe MT, Fox KA, Prabhakaran D, Marshall DA, Petitjean H, Lokhnygina Y, Brown E, Armstrong PW, White HD, Ohman EM; TRILOGY ACS Steering Committee . Study design and rationale of a comparison of prasugrel and clopidogrel in medically managed patients with unstable angina/non-ST-segment elevation myocardial infarction: the TaRgeted platelet Inhibition to cLarify the Optimal strateGy to medicallY manage Acute Coronary Syndromes (TRILOGY ACS) trial. Am Heart J 160: 16–22.e11, 2010. doi:10.1016/j.ahj.2010.04.022.
    1. Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM, Benitez BA, Jeng AT, Skorupa T, Carrell D, Bertelsen S, Bailey M, McKean D, Shulman JM, De Jager PL, Chibnik L, Bennett DA, Arnold SE, Harold D, Sims R, Gerrish A, Williams J, Van Deerlin VM, Lee VM, Shaw LM, Trojanowski JQ, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD, Peskind ER, Galasko D, Fagan AM, Holtzman DM, Morris JC, Goate AM; GERAD Consortium; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer Disease Genetic Consortium (ADGC) . GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78: 256–268, 2013. doi:10.1016/j.neuron.2013.02.026.
    1. Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B, Li B, Zhang D, Kang Y, Tan M, Qian W, Guo Y. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28: 3412–3422, 2009. doi:10.1038/onc.2009.189.
    1. Del Greco M F, Pattaro C, Luchner A, Pichler I, Winkler T, Hicks AA, Fuchsberger C, Franke A, Melville SA, Peters A, Wichmann HE, Schreiber S, Heid IM, Krawczak M, Minelli C, Wiedermann CJ, Pramstaller PP. Genome-wide association analysis and fine mapping of NT-proBNP level provide novel insight into the role of the MTHFR-CLCN6-NPPA-NPPB gene cluster. Hum Mol Genet 20: 1660–1671, 2011. doi:10.1093/hmg/ddr035.
    1. Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 330: 625, 2005. doi:10.1136/bmj.330.7492.625.
    1. Eggers KM, Lagerqvist B, Venge P, Wallentin L, Lindahl B. Prognostic value of biomarkers during and after non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 54: 357–364, 2009. doi:10.1016/j.jacc.2009.03.056.
    1. Erson AE, Petty EM. MicroRNAs in development and disease. Clin Genet 74: 296–306, 2008. doi:10.1111/j.1399-0004.2008.01076.x.
    1. Gidlof O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge D. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121: 3908–3917, 2013. doi:10.1182/blood-2012-10-461798.
    1. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14: 147–154, 2012. doi:10.1093/eurjhf/hfr155.
    1. Hall C. NT-ProBNP: the mechanism behind the marker. J Card Fail 11, Suppl: S81–S83, 2005. doi:10.1016/j.cardfail.2005.04.019.
    1. Hao L, Wang XG, Cheng JD, You SZ, Ma SH, Zhong X, Quan L, Luo B. The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Cardiovasc Pathol 23: 217–223, 2014. doi:10.1016/j.carpath.2014.03.009.
    1. He F, Lv P, Zhao X, Wang X, Ma X, Meng W, Meng X, Dong S. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem 394: 137–144, 2014. doi:10.1007/s11010-014-2089-0.
    1. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14: 319, 2013. doi:10.1186/1471-2164-14-319.
    1. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, Joshi FR, Gallagher FA, Warburton EA, Bennett MR, Brindle KM, Newby DE, Rudd JH, Davenport AP. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 6: 7495, 2015. doi:10.1038/ncomms8495.
    1. Jenei ZM, Széplaki G, Merkely B, Karádi I, Zima E, Prohászka Z. Persistently elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker in post-cardiac-arrest patients. Cell Stress Chaperones 18: 447–454, 2013. doi:10.1007/s12192-012-0399-2.
    1. Johansson Å, Eriksson N, Lindholm D, Varenhorst C, James S, Syvänen AC, Axelsson T, Siegbahn A, Barratt BJ, Becker RC, Himmelmann A, Katus HA, Steg PG, Storey RF, Wallentin L; PLATO Investigators . Genome-wide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum Mol Genet 25: 1447–1456, 2016. doi:10.1093/hmg/ddw012.
    1. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E, Aupetit JF, Aumont MC, Galinier M, Eicher JC, Cohen-Solal A, Juillière Y. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49: 1733–1739, 2007. doi:10.1016/j.jacc.2006.10.081.
    1. Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, McCahill A, Breen C, Mackenzie RM, Delles C, Mountford JC, Milligan G, Emanueli C, Baker AH. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 30: 643–654, 2012. doi:10.1002/stem.1026.
    1. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G. The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Front Genet 4: 94, 2013. doi:10.3389/fgene.2013.00094.
    1. Kögler H, Schott P, Toischer K, Milting H, Van PN, Kohlhaas M, Grebe C, Kassner A, Domeier E, Teucher N, Seidler T, Knöll R, Maier LS, El-Banayosy A, Körfer R, Hasenfuss G. Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase expression. Circulation 113: 2724–2732, 2006. doi:10.1161/CIRCULATIONAHA.105.608828.
    1. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101: 2087–2092, 2010. doi:10.1111/j.1349-7006.2010.01650.x.
    1. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42, D1: D68–D73, 2014. doi:10.1093/nar/gkt1181.
    1. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet 37: 495–500, 2005. doi:10.1038/ng1536.
    1. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414, 2007. doi:10.1016/j.cell.2007.04.040.
    1. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25, 2009. doi:10.1186/gb-2009-10-3-r25.
    1. Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 173: 268–276, 2014. doi:10.1016/j.ijcard.2014.02.035.
    1. Lorenzen JM, Schauerte C, Hübner A, Kölling M, Martino F, Scherf K, Batkai S, Zimmer K, Foinquinos A, Kaucsar T, Fiedler J, Kumarswamy R, Bang C, Hartmann D, Gupta SK, Kielstein J, Jungmann A, Katus HA, Weidemann F, Müller OJ, Haller H, Thum T. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J 36: 2184–2196, 2015. doi:10.1093/eurheartj/ehv109.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550, 2014. doi:10.1186/s13059-014-0550-8.
    1. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA; Breathing Not Properly Multinational Study Investigators . Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347: 161–167, 2002. doi:10.1056/NEJMoa020233.
    1. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17: 2011. doi:10.14806/ej.17.1.200.
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR; PARADIGM-HF Investigators and Committees . Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371: 993–1004, 2014. doi:10.1056/NEJMoa1409077.
    1. Musani SK, Fox ER, Kraja A, Bidulescu A, Lieb W, Lin H, Beecham A, Chen MH, Felix JF, Fox CS, Kao WH, Kardia SL, Liu CT, Nalls MA, Rundek T, Sacco RL, Smith J, Sun YV, Wilson G, Zhang Z, Mosley TH, Taylor HA, Vasan RS. Genome-wide association analysis of plasma B-type natriuretic peptide in blacks: the Jackson Heart Study. Circ Cardiovasc Genet 8: 122–130, 2015. doi:10.1161/CIRCGENETICS.114.000900.
    1. Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, Li J, Xu L, Chen YH. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci 16: 5420–5433, 2015. doi:10.3390/ijms16035420.
    1. Pillai MM, Gillen AE, Yamamoto TM, Kline E, Brown J, Flory K, Hesselberth JR, Kabos P. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. Breast Cancer Res Treat 146: 85–97, 2014. doi:10.1007/s10549-014-3004-9.
    1. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5: 492–497, 2012. doi:10.1158/1940-6207.CAPR-11-0370.
    1. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr Protoc Bioinformatics 47: 2014. doi:10.1002/0471250953.bi1112s47.
    1. Ren XP, Wu J, Wang X, Sartor MA, Jones K, Qian J, Nicolaou P, Pritchard TJ, Fan GC. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119: 2357–2366, 2009. doi:10.1161/CIRCULATIONAHA.108.814145.
    1. Roe MT, Armstrong PW, Fox KA, White HD, Prabhakaran D, Goodman SG, Cornel JH, Bhatt DL, Clemmensen P, Martinez F, Ardissino D, Nicolau JC, Boden WE, Gurbel PA, Ruzyllo W, Dalby AJ, McGuire DK, Leiva-Pons JL, Parkhomenko A, Gottlieb S, Topacio GO, Hamm C, Pavlides G, Goudev AR, Oto A, Tseng CD, Merkely B, Gasparovic V, Corbalan R, Cinteză M, McLendon RC, Winters KJ, Brown EB, Lokhnygina Y, Aylward PE, Huber K, Hochman JS, Ohman EM; TRILOGY ACS Investigators . Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med 367: 1297–1309, 2012. doi:10.1056/NEJMoa1205512.
    1. Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, Giannitsis E, Katus HA, Frey N. Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 1: 43–49, 2008. doi:10.1161/CIRCHEARTFAILURE.107.746172.
    1. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 340: 115–126, 1999. doi:10.1056/NEJM199901143400207.
    1. Soria JM, Fontcuberta J. New approaches and future prospects for evaluating genetic risk of thrombosis. Haematologica 90: 1212–1222, 2005. doi:10.1056/NEJM199901143400207.
    1. Stawowy P, Blaschke F, Pfautsch P, Goetze S, Lippek F, Wollert-Wulf B, Fleck E, Graf K. Increased myocardial expression of osteopontin in patients with advanced heart failure. Eur J Heart Fail 4: 139–146, 2002. doi:10.1016/S1388-9842(01)00237-9.
    1. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9: 219–230, 2008. doi:10.1038/nrm2347.
    1. Suezawa C, Kusachi S, Murakami T, Toeda K, Hirohata S, Nakamura K, Yamamoto K, Koten K, Miyoshi T, Shiratori Y. Time-dependent changes in plasma osteopontin levels in patients with anterior-wall acute myocardial infarction after successful reperfusion: correlation with left-ventricular volume and function. J Lab Clin Med 145: 33–40, 2005. doi:10.1016/j.lab.2004.08.007.
    1. Suleiman M, Khatib R, Agmon Y, Mahamid R, Boulos M, Kapeliovich M, Levy Y, Beyar R, Markiewicz W, Hammerman H, Aronson D. Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J Am Coll Cardiol 47: 962–968, 2006. doi:10.1016/j.jacc.2005.10.055.
    1. Templin C, Volkmann J, Emmert MY, Mocharla P, Müller M, Kraenkel N, Ghadri JR, Meyer M, Styp-Rekowska B, Briand S, Klingenberg R, Jaguszewski M, Matter CM, Djonov V, Mach F, Windecker S, Hoerstrup SP, Thum T, Lüscher TF, Landmesser U. Increased Proangiogenic Activity of Mobilized CD34+ Progenitor Cells of Patients With Acute ST-Segment-Elevation Myocardial Infarction: Role of Differential MicroRNA-378 Expression. Arterioscler Thromb Vasc Biol 37: 341–349, 2017. doi:10.1161/ATVBAHA.116.308695.
    1. Toischer K, Kögler H, Tenderich G, Grebe C, Seidler T, Van PN, Jung K, Knöll R, Körfer R, Hasenfuss G. Elevated afterload, neuroendocrine stimulation, and human heart failure increase BNP levels and inhibit preload-dependent SERCA upregulation. Circ Heart Fail 1: 265–271, 2008. doi:10.1161/CIRCHEARTFAILURE.108.785279.
    1. Vieceli Dalla Sega F, Fortini F, Aquila G, Campo G, Vaccarezza M, Rizzo P. Notch Signaling Regulates Immune Responses in Atherosclerosis. Front Immunol 10: 1130, 2019. doi:10.3389/fimmu.2019.01130.
    1. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43, D1: D153–D159, 2015. doi:10.1093/nar/gku1215.
    1. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43, W1: W460–W466, 2015. doi:10.1093/nar/gkv403.
    1. Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA, Hajjar RJ, Mercola M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508: 531–535, 2014. doi:10.1038/nature13073.
    1. Wang KJ, Zhao X, Liu YZ, Zeng QT, Mao XB, Li SN, Zhang M, Jiang C, Zhou Y, Qian C, Feng KG, Guan HQ, Tang TT, Cheng X, Chen ZJ. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are Promising Novel Biomarkers for Early Diagnosis of Acute Myocardial Infarction. Cell Physiol Biochem 38: 1015–1029, 2016. doi:10.1159/000443053.
    1. Wang R, Dong LD, Meng XB, Shi Q, Sun WY. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem Biophys Res Commun 464: 574–579, 2015. doi:10.1016/j.bbrc.2015.07.010.
    1. Wang Y, Yan W, Lu X, Qian C, Zhang J, Li P, Shi L, Zhao P, Fu Z, Pu P, Kang C, Jiang T, Liu N, You Y. Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells. Eur J Cell Biol 90: 642–648, 2011. doi:10.1016/j.ejcb.2011.03.005.
    1. Ward JA, Esa N, Pidikiti R, Freedman JE, Keaney JF, Tanriverdi K, Vitseva O, Ambros V, Lee R, McManus DD. Circulating Cell and Plasma microRNA Profiles Differ between Non-ST-Segment and ST-Segment-Elevation Myocardial Infarction. Fam Med Med Sci Res 2: 108, 2013. doi:10.4172/2327-4972.1000108.
    1. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem 56: 1733–1741, 2010. doi:10.1373/clinchem.2010.147405.

Source: PubMed

3
S'abonner