Reduction in peripheral vascular resistance predicts improvement in insulin clearance following weight loss

Nora E Straznicky, Mariee T Grima, Carolina I Sari, Elisabeth A Lambert, Sarah E Phillips, Nina Eikelis, Daisuke Kobayashi, Dagmara Hering, Justin A Mariani, John B Dixon, Paul J Nestel, Sofie Karapanagiotidis, Markus P Schlaich, Gavin W Lambert, Nora E Straznicky, Mariee T Grima, Carolina I Sari, Elisabeth A Lambert, Sarah E Phillips, Nina Eikelis, Daisuke Kobayashi, Dagmara Hering, Justin A Mariani, John B Dixon, Paul J Nestel, Sofie Karapanagiotidis, Markus P Schlaich, Gavin W Lambert

Abstract

Background: The hyperinsulinemia of obesity is a function of both increased pancreatic insulin secretion and decreased insulin clearance, and contributes to cardiovascular risk. Whilst weight loss is known to enhance insulin clearance, there is a paucity of data concerning the underlying mechanisms. This study was conducted to examine the inter-relationships between changes in sympathetic nervous system (SNS) activity, vascular function and insulin clearance during a weight loss program.

Methods: Seventeen non-smoking, un-medicated individuals aged 55 ± 1 years (mean ± SEM), body mass index (BMI) 33.9 ± 1.7 kg/m(2), underwent a 4-month hypocaloric diet (HCD), using a modified Dietary Approaches to Stop Hypertension diet, whilst seventeen age- and BMI-matched subjects acted as controls. Insulin sensitivity and insulin clearance were assessed via euglycemic hyperinsulinemic clamp (exogenous insulin clearance); hepatic insulin extraction was calculated as fasting C-peptide to insulin ratio (endogenous insulin clearance); SNS activity was quantified by microneurographic nerve recordings of muscle sympathetic nerve activity (MSNA) and whole-body norepinephrine kinetics; and vascular function by calf venous occlusion plethysmography and finger arterial tonometry.

Results: Weight loss averaged -8.3 ± 0.6% of body weight in the HCD group and was accompanied by increased clamp-derived glucose utilization (by 20 ± 9%, P = 0.04) and exogenous insulin clearance (by 12 ± 5%, P = 0.02). Hepatic insulin extraction increased from 6.3 ± 0.8 to 7.1 ± 0.9 (P = 0.09). Arterial norepinephrine concentration decreased by -12 ± 5%, whole-body norepinephrine spillover rate by -14 ± 8%, and MSNA by -9 ± 5 bursts per 100 heartbeats in the HCD group (P all >0.05 versus control group). Step-wise regression analysis revealed a bidirectional relationship between enhanced exogenous insulin clearance post weight loss and reduction in calf vascular resistance (r = -0.63, P = 0.01) which explained 40% of the variance. Increase in hepatic insulin extraction was predicted by enhanced finger reactive hyperaemic response (P = 0.006) and improvement in oral glucose tolerance (P = 0.002) which together explained 64% of the variance.

Conclusions: Insulin clearance is independently and reciprocally associated with changes in vascular function during weight loss intervention. Trial registration ClinicalTrials.gov: NCT01771042 and NCT00408850.

Figures

Fig. 1
Fig. 1
Changes in insulin sensitivity and insulin clearance in control and hypocaloric diet (HCD) groups (week 16 minus baseline measurements). a Homeostasis model assessment of insulin resistance (HOMA-IR): group × time interaction, P < 0.001. b Matsuda insulin sensitivity index (ISI): group × time interaction, P < 0.001. c Steady state glucose utilization during euglycemic clamp (M): group × time interaction, P = 0.02. d Fasting C-peptide to insulin ratio: group × time interaction, P = 0.06. e Insulin clearance: group × time interaction, P = 0.03. *P < 0.05 and ***P < 0.001 versus control group
Fig. 2
Fig. 2
Change in sympathetic nervous system parameters in relation to change in body weight and insulin status in control and hypocaloric diet (HCD) groups (week 16 minus baseline measurements). HCD sub-groups are indicated by the hashed bars and include hyperinsulinemic (Hyper, n = 10) and normo-insulinemic (Normo, n = 7) subjects. a Body weight. b Insulin area under the curve during oral glucose tolerance test (AUC0–120). c Muscle sympathetic nerve activity (MSNA) burst incidence. d Arterial plasma norepinephrine (NE) concentration. e Norepinephrine plasma clearance. f Whole-body norepinephrine spillover rate. *P < 0.05, **P < 0.01 and ***P < 0.001 versus control group
Fig. 3
Fig. 3
Calf vascular resistance during 75-g oral glucose tolerance test in a control and b HCD groups. *P < 0.05 versus baseline. Change in the area under the curve (AUC0–120) averaged 927 ± 555 units per min and −712 ± 526 units per min in control and HCD groups, respectively (P = 0.045)
Fig. 4
Fig. 4
Univariate correlates of change in whole-body insulin clearance and hepatic insulin extraction (fasting C-peptide to insulin ratio) in the HCD group (n = 17). a Change in fasting calf vascular resistance (r = −0.63, 0.007). b Change in steady state glucose utilization during euglycemic hyperinsulinemic clamp (M) (r = 0.45, P = 0.07). c Change in plasma HDL-cholesterol concentration (r = 0.53, P = 0.03). d Change in finger reactive hyperaemic index (r = 0.49 P = 0.04). e Change in Matsuda insulin sensitivity index (ISI) (r = 0.52, P = 0.03). f Change in glucose area under the curve (AUC0–120) during oral glucose tolerance test (r = −0.61, P = 0.009)

References

    1. Xun P, Wu Y, He Q, He K. Fasting insulin concentrations and incidence of hypertension, stroke, and coronary heart disease: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;98:1543–1554. doi: 10.3945/ajcn.113.065565.
    1. The DECODE Insulin Study Group Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. Diabetologia. 2004;47:1245–1256. doi: 10.1007/s00125-004-1433-4.
    1. Jones CNO, Abbasi F, Carantoni M, Polonsky KS, Reaven GM. Roles of insulin resistance and obesity in regulation of plasma insulin concentrations. Am J Physiol Endocrinol Metab. 2000;278:E501–E508.
    1. Erdmann J, Mayr M, Oppel U, Sypchenko O, Wagenpfeil S, Schusdziarra V. Weight-dependent differential contribution of insulin secretion and clearance to hyperinsulinemia of obesity. Regul Pept. 2009;152:1–7. doi: 10.1016/j.regpep.2008.10.008.
    1. Marini MA, Frontoni S, Succurro E, Arturi F, Fiorentino TV, Sciacqua A, Perticone F, Sesti G. Differences in insulin clearance between metabolically healthy and unhealthy obese subjects. Acta Diabetol. 2014;51:257–261. doi: 10.1007/s00592-013-0511-9.
    1. Mittelman SD, Van Citters GW, Kim SP, Davis DA, Dea MK, Hamilton-Wessler M, Bergman RN. Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced β-cell response. Diabetes. 2000;49:2116–2125. doi: 10.2337/diabetes.49.12.2116.
    1. Erdmann J, Kallabis B, Oppel U, Sypchenko O, Wagenpfeil S, Schusdziarra V. Development of hyperinsulinemia and insulin resistance during the early stage of weight gain. Am J Physiol Endocrinol Metab. 2008;294:E568–E575. doi: 10.1152/ajpendo.00560.2007.
    1. Peiris A, Mueller RA, Smith GA, Struve MF, Kissebah AH. Splanchnic insulin metabolism in obesity. Influence of body fat distribution. J Clin Invest. 1986;78:1648–1657. doi: 10.1172/JCI112758.
    1. Kotronen A, Vehkavaara S, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H. Effect of liver fat on insulin clearance. Am J Physiol Endocrinol Metab. 2007;293:E1709–E1715. doi: 10.1152/ajpendo.00444.2007.
    1. Lender D, Arauz-Pacheco C, Adams-Huet B, Raskin P. Essential hypertension is associated with decreased insulin clearance and insulin resistance. Hypertension. 1997;29:111–114. doi: 10.1161/01.HYP.29.1.111.
    1. Marini MA, Frontoni S, Succurro E, Arturi F, Fiorentino TV, Sciacqua A, Hribal ML, Perticone F, Sesti G. Decreased insulin clearance in individuals with elevated 1-h post-load plasma glucose levels. PLoS One. 2013;8:e77440. doi: 10.1371/journal.pone.0077440.
    1. Lee CC, Lorenzo C, Haffner SM, Wagenknecht LE, Goodarzi MO, Stefanovski D, Norris JM, Rewers MJ, Hanley AJ. Components of metabolic syndrome and 5-year change in insulin clearance—the Insulin Resistance Atherosclerosis Study. Diabetes Obes Metab. 2013;15:441–447. doi: 10.1111/dom.12049.
    1. Lee CC, Haffner SM, Wagenknecht LE, Lorenzo C, Norris JM, Bergman RN, Stefanovski D, Anderson AM, Rotter JI, Goodarzi MO, Hanley AJ. Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans. Diabetes Care. 2013;36:901–907. doi: 10.2337/dc12-1316.
    1. Bojsen-Moller KN, Dirksen C, Jorgensen NB, Jacobsen SH, Hansen DL, Worm D, Naver L, Kristiansen VB, Holst JJ, Madsbad S. Increased hepatic insulin clearance after Roux-en-Y gastric bypass. J Clin Endocrinol Metab. 2013;98:E1066–E1071. doi: 10.1210/jc.2013-1286.
    1. Svendsen PF, Jensen FK, Holst JJ, Haugaard SB, Nilas L, Madsbad S. The effect of a very low calorie diet on insulin sensitivity, beta cell function, insulin clearance, incretin hormone secretion, androgen levels and body composition in obese young women. Scand J Clin Lab Invest. 2012;72:410–419. doi: 10.3109/00365513.2012.691542.
    1. Ferrannini E, Wahren J, Faber OK, Felig P, Binder C, DeFronzo RA. Splanchnic and renal metabolism of insulin in human subjects: a dose-response study. Am J Physiol. 1983;244:E517–E527.
    1. Mora MEV, Scarfone A, Calvani M, Greco AV, Mingrone G. Insulin clearance in obesity. J Am Coll Nutr. 2003;22:487–493. doi: 10.1080/07315724.2003.10719326.
    1. Straznicky NE, Grima MT, Lambert EA, Sari CI, Eikelis N, Nestel PJ, Phillips S, Hering D, Karapanagiotidis S, Dixon JB, Schlaich MP, Lambert GW. Arterial norepinephrine concentration is inversely and independently associated with insulin clearance in obese individuals with metabolic syndrome. J Clin Endocrinol Metab. 2015;100:1544–1550. doi: 10.1210/jc.2014-3796.
    1. O’Callaghan CJ, Komersova K, Louis WJ. Acute effects of blood pressure elevation on insulin clearance in normotensive healthy subjects. Hypertension. 1998;31:104–109. doi: 10.1161/01.HYP.31.1.104.
    1. Egan BM. Neurohumoral, hemodynamic and microvascular changes as mechanisms of insulin resistance in hypertension: a provocative but partial picture. Int J Obes. 1991;15:133–139.
    1. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension. 1993;21:618–623. doi: 10.1161/01.HYP.21.5.618.
    1. Richardson PD, Withrington PG. Liver blood flow. II. Effects of drugs and hormones on liver blood flow. Gastroenterology. 1981;81:356–375.
    1. Schmetterer L, Muller M, Fasching P, Diepolder C, Gallenkamp A, Zanaschka G, Findl O, Strenn K, Mensik C, Tscherno E, Eichler HG, Woltz M. Renal and ocular hemodynamic effects of insulin. Diabetes. 1997;46:1868–1874. doi: 10.2337/diab.46.11.1868.
    1. Joost HG, Quentin SH. Effects of chemical sympathectomy on insulin receptors and insulin action in isolated rat adipocytes. J Pharmacol Ther. 1984;229:839–844.
    1. Klein HH, Matthaei S, Drenkhan M, Ries W, Scriba PC. The relationship between insulin binding, insulin activation of insulin-receptor tyrosine kinase, and insulin stimulation of glucose uptake in isolated rat adipocytes. Effects of isoprenaline. Biochem J. 1991;274:787–792. doi: 10.1042/bj2740787.
    1. Rowe JH, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981;30:219–225. doi: 10.2337/diab.30.3.219.
    1. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601.
    1. Layman DK, Boileua RA, Erickson DJ, Painter JE, Shiue H, Sather C, Christou DD. A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J Nutr. 2003;133:411–417.
    1. Obarznek E, Sacks FM, Vollmer WM, Bray GA, Miller ER, Lin PH, Karanja NM, Most-Windhauser MM, Moore TJ, Swain JF, Bales CW, Proschan MA. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr. 2001;74:80–89.
    1. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi T, Azizi F. Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome. Diabetes Care. 2005;28:2823–2831. doi: 10.2337/diacare.28.12.2823.
    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycaemia in type 2 diabetes: a patient-centred approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2012;55:1577–1596. doi: 10.1007/s00125-012-2534-0.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing. Diabetes Care. 1999;22:1462–1470. doi: 10.2337/diacare.22.9.1462.
    1. Castillo MJ, Scheen AJ, Letiexhe MR, Lefebvre PJ. How to measure insulin clearance. Diabetes Metab Rev. 1994;10:119–150. doi: 10.1002/dmr.5610100205.
    1. Esler M, Jackman G, Bobik A, Kelleher D, Jennings G, Leonard P, Skews H, Korner P. Determination of norepinephrine apparent release rate and clearance in humans. Life Sci. 1979;25:1461–1470. doi: 10.1016/0024-3205(79)90371-0.
    1. Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM, Mitchell GF, Scheffy J, Vita JA, Benjamin EJ. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 2008;117:2467–2474. doi: 10.1161/CIRCULATIONAHA.107.748574.
    1. Bigornia SJ, Farb MG, Tiwari S, Karki S, Hamburg NM, Vita JA, Hess DT, LaValley MP, Apovian CM, Gocke N. Insulin status and vascular responses to weight loss in obesity. J Am Coll Cardiol. 2013;62:2297–2305. doi: 10.1016/j.jacc.2013.07.078.
    1. Bosello O, Zamboni M, Armellini F, Zocca I, Begamo-Andreis IA, Smacchia C, Milani MP, Cominacini L. Modification of abdominal fat and hepatic insulin clearance during severe caloric restriction. Ann Nutr Metab. 1990;34:359–365. doi: 10.1159/000177610.
    1. Polonsky KS, Gumbiner B, Ostrega D, Griver K, Tager H, Henry RR. Alterations in immunoreactive proinsulin and insulin clearance induced by weight loss in NIDDM. Diabetes. 1994;43:871–877. doi: 10.2337/diab.43.7.871.
    1. Assali AR, Ganor A, Beigel Y, Shafer Z, Hershcovici T, Fainaru M. Insulin resistance in obesity: body weight or energy balance? J Endocrinol. 2001;171:293–298. doi: 10.1677/joe.0.1710293.
    1. Straznicky NE, Grima MT, Eikelis N, Nestel PJ, Dawood T, Schlaich MP, Chopra R, Masuo K, Esler MD, Sari CI, Lambert GW, Lambert EA. The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components. J Clin Endocrinol Metab. 2011;96:E503–E508. doi: 10.1210/jc.2010-2204.
    1. Sjostrand M, Gudbjornsdottir S, Strindberg L, Lonnroth P. Delayed transcapillary delivery of insulin to muscle interstitial fluid after oral glucose load in obese subjects. Diabetes. 2005;54:152–157. doi: 10.2337/diabetes.54.1.152.
    1. Prior SJ, Blumenthal JB, Katzel LI, Goldberg AP, Ryan AS. Increased skeletal muscle capillarization after aerobic exercise training and weight loss improves insulin sensitivity in adults with IGT. Diabetes Care. 2014;37:1469–1475. doi: 10.2337/dc13-2358.
    1. Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitral D, Ganz P. Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol. 2006;101:545–548. doi: 10.1152/japplphysiol.01285.2005.
    1. Kim J, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction. Molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–1904. doi: 10.1161/CIRCULATIONAHA.105.563213.
    1. Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Graighead L, Lin PH, Caccia C, Johnson J, Waugh R, Sherwood A. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: The encore study. Arch Intern Med. 2010;170:126–135. doi: 10.1001/archinternmed.2009.470.
    1. Riwanto M, Landmesser U. High density lipoproteins and endothelial function: mechanistic insights and alterations in cardiovascular disease. J Lipid Res. 2013;54:3227–3243. doi: 10.1194/jlr.R037762.
    1. Lin PH, Allen JD, Li YJ, Yu M, Lien LF, Svetkey LP (2012) Blood pressure-lowering mechanisms of the DASH dietary pattern. J Nutr Metab Article ID 472396:1–10
    1. Haspicova M, Milek D, Siklova-Vitkova M, Wedellova Z, Hejnova J, Bajzova M, Stich V, Polak J. Post-prandial endothelial dysfunction is ameliorated following weight loss in obese premenopausal women. Med Sci Monit. 2011;17:CR634–CR639. doi: 10.12659/MSM.882048.
    1. Flaa A, Aksnes TA, Kjeldsen SE, Eide I, Rostrup M. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolism Clin Exp. 2008;57:1422–1427. doi: 10.1016/j.metabol.2008.05.012.
    1. Straznicky NE, Lambert EA, Nestel PJ, McGrane MT, Dawood T, Schlaich MP, Masuo K, Eikelis N, deCourten B, Mariani JA, Esler MD, Socratous F, Chopra R, Sari CI, Paul E, Lambert GW. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes. 2010;59:71–79. doi: 10.2337/db09-0934.
    1. Azuma M, Chihara Y, Yoshimura C, Murase K, Hamada S, Tachikawa R, Matsumoto T, Inouchi M, Tanizawa K, Handa T, Oga T, Mishima M, Chin K. Association between endothelial function (assessed on reactive hyperemia peripheral arterial tonometry) and obstructive sleep apnea, visceral fat accumulation, and serum adiponectin. Circ J. 2015;79:1381–1389. doi: 10.1253/circj.CJ-14-1303.

Source: PubMed

3
S'abonner