A Cross-Modal Perspective on the Relationships between Imagery and Working Memory

Lora T Likova, Lora T Likova

Abstract

Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial "sketchpad" for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic "projection screen" of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the "top-down" signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire extrastriate cortex, thus 'cutting-off' any signal propagation from/to V1 through the visual hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of WM and imagery and the nature of internal representations are evaluated.

Keywords: drawing; fMRI; primary visual cortex V1; visual imagery; visuo-spatial sketchpad; working memory.

Figures

Figure 1
Figure 1
Experimental design. (A) Drawing was investigated in a three-phase paradigm consisting of a memory-guided drawing task, abbreviated as “MemoryDraw” (MD), plus two control tasks: a motor-control and negative memory-control task “Scribble” (S), and a task of perceptual exploration and memorization of the model to be drawn “Explore/Memorize” (E/M). Each task’s duration was 20 s, with 20 s null intervals interposed between the tasks, the whole 140 s trial sequence being repeated 12 times in each scanning session using a new image for each repeat. (B) Raised-line drawings of realistic faces and objects were presented as templates to be explored by the subject using her left hand. The quality of the reproductions was assessed by a masked rating procedure, based on recognition and similarity to the templates (examples of reproduction are shown in Figure 3).
Figure 2
Figure 2
A subject on the scanner bed operating our novel multimodal MRI-compatible drawing system. The plexiglass gantry supports a drawing tablet while a fiber-optic drawing stylus captures and records the drawing movements with high precision. The motion-capture information synchronized with the fMRI allows the effect of behavioral events to be analyzed to high precision.
Figure 3
Figure 3
Examples of blindfolded drawings of the vase with a flower, the face profile, and the boot (the corresponding templates shown in Figure 1B are easy to recognize: the first and the second in the top row, and the first in the bottom row). Remarkably, the post-training drawings, recorded in the scanner by the motion-capture system show a lot of specific detail, which makes them readily recognizable as specific examples of their category, although they were drawn without visual or tactile input (i.e., with eye-hand coordination eliminated), but were guided solely by tactile-memory.
Figure 4
Figure 4
BOLD activation and deactivation in non-visual memory drawing in the blindfolded. Post-training group responses from the MD task are derived according to the GLM described in Section “Materials and Methods,” and projected on inflated representations of the lateral left (A) and right (B), and medial left (C) and right (D) hemispheres in MNI brain coordinates. Dark-gray, sulci; light gray, gyri. (A,B) A non-occipital network of temporal, parietal, and frontal regions is activated (yellow-orange coloration), together with strong deactivation (blue-cyan coloration) in a network that corresponds broadly to the default-mode network (except for the occipital lobe portion). (C,D) Both medial views show massive activation along the calcarine sulcus (CaS) corresponding to V1 surrounded by deactivation, which extends throughout the lateral regions of the visual cortex. Activation is shown down to −1 < z < 1; the scale bar indicates the color-coding for the respective z-score levels. Note that, interestingly, the medial CaS activation spreads to the same eccentricity in both hemispheres.
Figure 5
Figure 5
(A)MD flat-maps centered on the occipital pole. ROIs for the retinotopic hierarchy are indicated by colored outlines, with hMT+ and LOC based on functional localizers. The post-training MD map shows a “triad” of three activation regions (orange-yellow coloration). Note in particular that the (non-stimulated visually) primary visual cortex, V1, forms an unusual isolated “island” of activation surrounded by a “sea” of suppression in the adjacent retinotopic areas. The other two activated regions seen on the flat map are the caudal intraparietal sulcus (cIPS) dorsally and an additional locus at the occipitotemporal border (LOtv). (B) Average response amplitude with standard errors for blindfolded memory-guided drawing in a group of six subjects, showing positive signal in the triad of areas – primary visual area V1, cIPS, and LOtv; these three “islands” of positive activation are separated by strong deactivation in both the ventral and the dorsal extrastriate areas. Error bars represent 1 standard error of the means.
Figure 6
Figure 6
The MD task shows the predominant training effect in the primary visual cortex. A voxel-wise comparison, projected on inflated representations of the posterior left (LH) and right (RH) hemispheres, with orange-yellow coloration showing the average pre/post increase in BOLD activation for MD in the CaS (V1) region.
Figure 7
Figure 7
Comparison of the activation pattern across the three tasks. (A) Average time-courses of BOLD activity (black curve) in V1 for the sequence of the E/M, MD, and S task intervals (white bars); the colored curves are the best fits of the model predictions for the three tasks to the time course; the four dark-gray bars indicate the 20 s null intervals separating the three tasks. (B) Bar-graphs for the estimated V1 activation for each task; the activation levels refer to the beta weights for the event types in the GLM. Dotted lines and the error bars represent confidence intervals for two different forms of statistical comparison of the activation levels. Dotted lines represent the 99% “zero” confidence interval, within which the activations are not significantly different from zero. Error bars are 99% “difference” confidence intervals designed to illustrate the t-test to assess the significance of the differences between pairs of activation levels in each figure, i.e., amplitude differences are not significant unless they exceed the confidence intervals for both compared activations. (C) Average time-courses of BOLD activity in the deactivated regions surrounding V1. (D) Bar-graphs of estimated activation for each task for the deactivated regions presented in (C). Conventions in (C,D) are as in (A,B), respectively.
Figure 8
Figure 8
The proposed re-conceptualization of the visuo-spatial sketchpad as an amodal-spatial sketchpad. Modified schematic of the main modules of Baddeley’s classic model of working memory including the visuo-spatial sketchpad (after Baddeley, 2003), where the added “Amodal-Spatial Sketchpad” block depicts our re-conceptualization of the visuo-spatial sketchpad as being accessible to any sensory modality (from Likova, 2012).

References

    1. Adams M. M., Hof P. R., Gattass R., Webster M. J., Ungerleider L. G. (2000). Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J. Comp. Neurol. 419, 377–39310.1002/(SICI)1096-9861(20000410)419:3<377::AID-CNE9>;2-E
    1. Amedi A., Jacobson G., Hendler T., Malach R., Zohary E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb. Cortex 12, 1202–121210.1093/cercor/12.11.1202
    1. Amedi A., Malach R., Hendler T., Peled S., Zohary E. (2001). Visuohaptic object-related activation in the ventral visual pathway. Nat. Neurosci. 4, 324–33010.1038/85201
    1. Baddeley A. D. (1986). Working Memory. New York, NY: Oxford University Press
    1. Baddeley A. D. (1992). Working memory. Science 255, 556–55910.1126/science.1736359
    1. Baddeley A. D. (2000). The episodic buffer: a new component of working memory? Trends Cogn. Sci. (Regul. Ed.) 4, 417–42310.1016/S1364-6613(00)01538-2
    1. Baddeley A. D. (2003). Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–83910.1038/nrm1251
    1. Baddeley A. D., Andrade J. (2000). Working memory and the vividness of imagery. J. Exp. Psychol. Gen. 129, 126–14510.1037/0096-3445.129.1.126
    1. Baddeley A. D., Hitch G. J. (1974). “Working memory,” in The Psychology of Learning and Motivation, Vol. 8, ed. Bower G. (San Diego, CA: AcademicPress; ), 47–90
    1. Barone P., Batardiere A., Knoblauch K., Kennedy H. (2000). Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J. Neurosci. 20, 3263–3281
    1. Blasdel G. G., Lund J. S. (1983). Termination of afferent axons in macaque striate cortex. J. Neurosci. 3, 1389–1413
    1. Block N. (2003). Tactile sensation via spatial perception. Trends Cogn. Sci. (Regul. Ed.) 7, 285–28610.1016/S1364-6613(03)00132-3
    1. Bruyer R., Scailquin J. C. (1998). The visuospatial sketchpad for mental images: Testing the multicomponent model of working memory. Acta Psychol. (Amst.) 98, 17–3610.1016/S0001-6918(97)00053-X
    1. Budd M. L. (1998). Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity. Proc. Biol. Sci. 265, 1037–104410.1098/rspb.1998.0396
    1. Charlot V., Tzourio N., Zilbovicius M., Mazoyer B., Denis M. (1992). Different mental imagery abilities result in different regional cerebral blood flow activation patterns during cognitive tests. Neuropsychologia 30, 565–58010.1016/0028-3932(92)90059-U
    1. Chen W., Kato T., Zhu X.-H., Ogawa S., Tank D. W., Ugurbil K. (1998). Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9, 3669–367410.1097/00001756-199811160-00019
    1. Clavagnier S., Falchier A., Kennedy H. (2004). Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn. Affect. Behav. Neurosci. 4, 117–12610.3758/CABN.4.2.117
    1. Cohen L. G., Celnik P., Pascual-Leone A., Corwell B., Falz L., Dambrosia J., et al. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–18310.1038/39792
    1. D’Esposito M., Detre J. A., Aguirre G. K., Stallcup M., Alsop D. C., Tippet L. J., et al. (1997). A functional MRI study of mental image generation. Neuropsychologia 35, 725–73010.1016/S0028-3932(96)00121-2
    1. Di Lollo V. (1980). Temporal integration in visual memory. J. Exp. Psychol. Gen. 109, 75–9710.1037/0096-3445.109.1.75
    1. Doty R. W. (1983). Nongeniculate afferents to striate cortex in macaques. J. Comp. Neurol. 218, 159–17310.1002/cne.902180204
    1. Engel S. A., Glover G. H., Wandell B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–19210.1093/cercor/7.2.181
    1. Florence S. L., Kaas J. H. (1995). Large-scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J. Neurosci. 15, 8083–8095
    1. Formisano E., Linden D. J., Di Salle F., Trojano L., Esposito F., Sack A. T., et al. (2002). Tracking the mind’s image in the brain: I. Timeresolved fMRI during visuospatial mental imagery. Neuron 35, 185–19410.1016/S0896-6273(02)00747-X
    1. Ganis G., Thompson W. L., Kosslyn S. M. (2004). Brain areas underlying visual mental imagery and visual perception: An fMRI study. Cogn. Brain Res. 20, 226–24110.1016/j.cogbrainres.2004.02.012
    1. Goldenberg G., Podreka I., Steiner M., Franzen P., Deecke L. (1991). Contributions of occipital and temporal brain regions to visual and acoustic imagery-A SPECT study. Neuropsychologia 29, 695–70210.1016/0028-3932(91)90103-F
    1. Graham J. (1982). Some topographical connections of the striate cortex with subcortical structures in Macaca fascicularis. Exp. Brain Res. 47, 1–1410.1007/BF00235880
    1. Harrison S. A., Tong F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–63510.1038/nature07832
    1. Hendry S. H., Yoshioka T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575–57710.1126/science.8160015
    1. Ishai A., Haxby J. V., Ungerleider L. G. (2002). Visual imagery of famous faces: Effects of memory and attention revealed by fMRI. Neuroimage 17, 1729–174110.1006/nimg.2002.1330
    1. Ishai A., Sagi D. (1995). Common mechanisms of visual imagery and perception. Science 268, 1771–197410.1126/science.7792605
    1. Ishai A., Ungerleider L., Haxby J. V. (2000). Distributed neural systems for the generation of visual images. Neuron 28, 979–99010.1016/S0896-6273(00)00168-9
    1. Jones E. G. (2000). Plasticity and neuroplasticity. J. Hist. Neurosci. 9, 37–3910.1076/0964-704X(200004)9:1;1-2;FT037
    1. Kaas A., Weigelt S., Roebroeck A., Kohler A., Muckli L. (2010). Imagery of a moving object: the role of occipital cortex and human MT/V5+. Neuroimage 49, 794–80410.1016/j.neuroimage.2009.07.055
    1. Kennedy J. (1993). Drawing and the Blind. New Haven, CT: Yale University Press
    1. Kennedy J. M. (2000). “Recognizing outline pictures via touch: Alignment theory,” in Touch, Representation and Blindness, ed. Heller M. A. (Oxford: Oxford University Press; ), 67–98
    1. Kennedy J. M., Igor J. (2003). Haptics and projection: drawings by Tracy, a blind adult. Perception 32, 1059–107110.1068/p3425
    1. Kennedy J. M., Juricevic I. (2006). Foreshortening, convergence and drawings from a blind adult. Perception 35, 847–85110.1068/p5316
    1. Keogh R., Pearson J. (2011). Mental imagery and visual working memory. PLoS ONE 6:e29221.10.1371/journal.pone.0029221
    1. Knauff M., Kassubek J., Mulack T., Greenlee M. W. (2000). Cortical activation evoked by visual mental imagery as measured by fMRI. Neuroreport 11, 3957–396210.1097/00001756-200012180-00011
    1. Kosslyn S. M., Alpert N. M., Thompson W. L., Maljkovic V., Weise S. B., Chabris C. F., et al. (1993). Visual mental-imagery activates topographically organized visual cortex – pet investigations. J. Cogn. Neurosci. 5, 263–28710.1162/jocn.1993.5.3.263
    1. Kosslyn S. M., Ganis G., Thompson W. L. (2001). Neural foundations of imagery. Nat. Rev. Neurosci. 2, 635–64210.1038/35090055
    1. Kosslyn S. M., Pascual-Leone A., Felician O., Camposano S., Keenan J. P., Thompson W. L., et al. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–17010.1126/science.284.5411.167
    1. Kosslyn S. M., Shin L. M., Thompson W. L., McNally R. J., Rauch S. L., Pitman R. K., et al. (1996). Neural effects of visualizing and perceiving aversive stimuli: A PET investigation. Neuroreport 7, 1569–157610.1097/00001756-199607080-00007
    1. Kosslyn S. M., Thompson W. L. (2003). When is early visual cortex activated during visual mental imagery? Psychol. Bull. 129, 723–74610.1037/0033-2909.129.5.723
    1. Kreiman G., Koch C., Fried I. (2000). Imagery neurons in the human brain. Nature 408, 357–36110.1038/35042575
    1. Lachica E. A., Casagrande V. A. (1992). Direct W-like geniculate projections to the cytochrome-oxidase (CO) blobs in primate visual cortex: axon morphology. J. Comp. Neurol. 319, 141–15810.1002/cne.903190112
    1. Lambert S., Sampaio E., Scheiber C., Mauss Y. (2002). Neural substrates of animal mental imagery: Calcarine sulcus and dorsal pathway involvement – an fMRI study. Brain Res. 924, 176–18310.1016/S0006-8993(01)03232-2
    1. Le Bihan D., Turner R., Zeffiro T. A., Cuénod C. A., Jezzard P., Bonnerot V. (1993). Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl. Acad. Sci. U.S.A. 90, 11802–1180510.1073/pnas.90.24.11802
    1. Lee T. S., Mumford D. (2003). Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–144810.1364/JOSAA.20.001434
    1. Lee T. S., Mumford D., Romero R., Lamme V. A. F. (1998). The role of the primary visual cortex in higher level vision. Vision Res. 38, 2429–245410.1016/S0042-6989(97)00464-1
    1. Likova L. T. (2010a). “Drawing in the blind and the sighted as a probe of cortical reorganization,” in Proceedings of the SPIE7527 Human Vision and Electronic Imaging, eds Rogowitz B. E., Pappas T. N., 752708–752714
    1. Likova L. T. (2010b). The primary visual cortex as a modality-independent ‘screen’ for working memory. J. Vision 10:776.10.1167/10.7.776
    1. Likova L. T. (2012). Drawing enhances cross-modal memory plasticity in the human brain: A case study in a totally blind adult. Front. Hum. Neurosci. 6:44.10.3389/fnhum.2012.00044
    1. Logie R. (1995). Visio-spatial Working Memory. Hove: Lawrence Erlbaum Associates Ltd
    1. Logie R. H., Baddeley A. D., Mane A., Donchin E., Sheptak R. (1989). Working memory and the analysis of a complex skill by secondary task methodology. Acta Psychol. 71, 53–8710.1016/0001-6918(89)90005-X
    1. Logie R. H., Marchetti C. (1991). “Visio-soatial working memory: visual, spatial or central executive?” in Mental Images in Human Cognition, eds Logie R. H., Denis M. (Amsterdam: Elsevier; ), 105–115
    1. Mazard A., Tzourio-Mazoyer N., Crivello F., Mazoyer B., Mellet E. (2004). A PET meta-analysis of object and spatial mental imagery. Eur. J. Cogn. Psychol. 16, 673–69510.1080/09541440340000484
    1. Mechelli A., Price C. J., Friston K. J., Ishai A. (2004). Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb. Cortex 14, 1256–126510.1093/cercor/bhh087
    1. Mellet E., Petit L., Mazoyer B., Denis M., Tzourio N. (1998a). Reopening the mental imagery debate: Lessons from functional anatomy. Neuroimage 8, 129–13910.1006/nimg.1998.0355
    1. Mellet E., Tzourio N., Denis M., Mazoyer B. (1998b). Cortical anatomy of mental imagery of concrete nouns based on their dictionary definition. Neuroreport 9, 803–80810.1097/00001756-199803300-00007
    1. Mellet E., Tzourio N., Denis M., Mazoyer B. (1995). A positron emission tomography study of visual and mental spatial exploration. J. Cogn. Neurosci. 7, 433–44510.1162/jocn.1995.7.4.433
    1. Merabet L. B., Hamilton R., Schlaug G., Swisher J. D., Kiriakopoulos E. T., Pitskel N. B., et al. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE 3:e3046.10.1371/journal.pone.0003046
    1. Mumford D. (1991). On the computational architecture of the neocortex I: the role of the thalamo-cortical loop. Biol. Cyber. 65, 135–14510.1007/BF00202389
    1. Mumford D. (1996). “Commentary on banishing the homunculus by H. Barlow,” in Perception as Bayesian Inference, eds Knill D. C., Richards W. (Cambridge: Cambridge University Press; ), 501–504
    1. O’Craven K. M., Kanwisher N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–102310.1162/08989290051137549
    1. Ogren M., Hendrickson A. (1976). Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: evidence for a reciprocal pulvinar connection. Exp. Neurol. 53, 780–80010.1016/0014-4886(76)90155-2
    1. Pascual-Leone A., Hamilton R. (2001). The metamodal organization of the brain. Prog. Brain Res. 134, 427–44510.1016/S0079-6123(01)34028-1
    1. Perkel D. J., Bullier J., Kennedy H. (1986). Topography of the afferent connectivity of area 17 of the macaque monkey: a double labeling study. J. Comp. Neurol. 253, 374–40210.1002/cne.902530307
    1. Ponchillia P. E. (2008). “Non-visual sports and arts: fertile substrates for the growth of knowledge about brain plasticity in people who are blind or have low vision,” in Blindness and Brain Plasticity in Navigation and Object Perception, eds Rieser J. J., Ashmead D. H., Ebner F. F., Corn A. L. (London: Lawrence Erlbaum Associates; ), 283–313
    1. Raichle M. E., Snyder A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. Neuroimage 37, 1083–109010.1016/j.neuroimage.2007.02.041
    1. Raineteau O., Schwab M. E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–27310.1038/35067570
    1. Reed C. L., Shoham S., Halgren E. (2004). neural substrates of tactile object recognition: An fMRI study. Hum. Brain Mapp. 21, 236–24610.1002/hbm.10162
    1. Rezak M., Benevento L. A. (1979). A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res. 167, 19–4010.1016/0006-8993(79)90260-9
    1. Rockland K. S. (1994). “The organization of feedback connections from areaV2 (18) to V1 (17),” in Cerebral Cortex, Vol. 10: Primary Visual Cortex in Primates, eds Peters A., Rockland K. S. (NewYork, NY: Plenum; ), 261–299
    1. Sabbah P., Simond G., Levrier O., Habib M., Trabaud V., Murayama N., et al. (1995). Functional magnetic resonance imaging at 1.5 T during sensorimotor and cognitive task. Eur. Neurol. 35, 131–13610.1159/000117108
    1. Sack A. T., Sperling J. M., Prvulovic D., Formisano E., Goebel R., Di Salle F., et al. (2002). Tracking the mind’s image in the brain: II. Transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35, 195–20410.1016/S0896-6273(02)00745-6
    1. Sadato N., Pascual-Leone A., Grafman J., Ibañez V., Deiber M. P., Dold G., et al. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–52810.1038/380526a0
    1. Schmolesky M. (2000). The Primary Visual Cortex. Available at:
    1. Sereno M. I., Dale A. M., Reppas J. B., Kwong K. K., Belliveau J. W., Brady T. J., et al. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–89310.1126/science.7754376
    1. Shin L. M., McNally R. J., Kosslyn S. M., Thompson W. L., Rauch S. L., Alpert N. M., et al. (1999). Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am. J. Psychiatry 156, 575–584
    1. Shipp S., Zeki S. M. (1989). The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur. J. Neurosci. 1, 309–33210.1111/j.1460-9568.1989.tb00798.x
    1. Sperling G. (1963). A model for visual memory tasks. Hum. Factors 5, 19–31
    1. Super H. (2003). Working memory in the primary visual cortex. Arch. Neurol. 60, 809–81210.1001/archneur.60.6.809
    1. Super H., Spekreijse H., Lamme V. A. F. (2001a). A neural correlate of working memory in the monkey primary visual cortex. Science 293, 120–12410.1126/science.1060496
    1. Super H., Spekreijse H., Lamme V. A. F. (2001b). Two distinct models of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–31010.1038/85170
    1. Suzuki W., Saleem K. S., Tanaka K. (2000). Divergent backward projections from the anterior part of the inferotemporal cortex (area TE) in the macaque. J. Comp. Neurol. 422, 206–22810.1002/(SICI)1096-9861(20000626)422:2<206::AID-CNE5>;2-0
    1. Thompson W. L., Kosslyn S. M., Sukel K. E., Alpert N. M. (2001). Mental imagery of high- and low-resolution gratings activates area 17. Neuroimage 14, 454–46410.1006/nimg.2001.0803
    1. Tootell R. B., Dale A. M., Sereno M. I., Malach R. (1996). New images from human visual cortex. Trends Neurosci. 95, 818–824
    1. Trojano L., Grossi D., Linden D. E. J., Formisano E., Hacker H., Zanella F. E., et al. (2000). Matching two imagined clocks: The functional anatomy of spatial analysis in the absence of visual stimulation. Cereb. Cortex 10, 473–48110.1093/cercor/10.5.473
    1. Tyler C. W., Likova L. T., Chen C. C., Kontsevich L. L., Schira M. M., Wade A. R. (2005). Extended concepts of occipital retinotopy. Curr. Med. Imag. Rev. 1, 319–32910.2174/157340505774574772
    1. Ungerleider L. G., Desimone R. (1986a). Projections to the superior temporal sulcus from the central and peripheral field representations of Vl and V2. J. Comp. Neurol. 248, 147–16310.1002/cne.902480204
    1. Ungerleider L. G., Desimone R. (1986b). Cortical connections of visual area MT in the macaque. J. Comp. Neurol. 248, 190–22210.1002/cne.902480204
    1. Van Brussel L., Gerits A., Arckens L. (2011). Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb. Cortex 21, 2133–214610.1093/cercor/bhq286
    1. Wheeler M. E., Petersen S. E., Buckner R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 11125–1112910.1073/pnas.97.20.11125
    1. Zangaladze A., Epstein C. M., Grafton S. T., Sathian K. (1999). Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–59010.1038/44139

Source: PubMed

3
S'abonner