Drawing enhances cross-modal memory plasticity in the human brain: a case study in a totally blind adult

Lora T Likova, Lora T Likova

Abstract

In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or "sketchpad," for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw.

Keywords: blind; brain plasticity; drawing; fMRI; learning; primary visual cortex V1; visuo-spatial sketchpad; working memory.

Figures

Figure 1
Figure 1
Matisse: Lithographs No. 54: “Marie(left), No. 35: “Ma Maîtresse(center), No. 45: “Les Colombes Amoureuses(right), from the illustrations for Ronsard's “Florilège des Amours” (1948).
Figure 2
Figure 2
Experimental design. Drawing was investigated in a three-phase paradigm consisting of a memory-guided drawing task, abbreviated as “MemoryDraw” (MD), plus two control tasks: a motor and “negative” memory control task “Scribble” (S), and a task of perceptual exploration and memorization of the model to be drawn “Explore/Memorize” (E/M). Each task duration was 20 s, with 20 s rest intervals elapsing between the tasks, with the whole trial sequence being repeated 12 times in each scanning session.
Figure 3
Figure 3
Raised-line drawing models. Realistic faces and objects explored by the subject using her left hand in the E/M task were drawn from memory in the MD task after a 20 s rest interval. Two repetitions of each of the six stimuli were run in each fMRI session for total of 12 runs per session.
Figure 4
Figure 4
A subject on the scanner bed operating our novel multimodal MRI-compatible drawing device. The plexiglass gantry supports a drawing tablet while a fiber-optic drawing stylus captures and records the drawing movements with high precision. The motion capture information synchronized with the fMRI allows the effect of behavioral events to be analyzed.
Figure 5
Figure 5
Primary visual cortex shows the predominant learning effect in the MD task. A voxel-wise comparison, projected on inflated representations of the posterior left (LH) and right (RH) hemispheres, shows the increase (orange-yellow coloration) of the post-training BOLD activation in MD relative to the pre-training level. Dark gray, sulci; light gray, gyri.
Figure 6
Figure 6
V1 activation in MD before training (A) and after training (B). BOLD activation (orange-yellowish coloration) from the MD task, derived according to the GLM described in Materials and Methods, and projected on inflated representations of the posterior left (LH) and right (RH) hemispheres is shown for both the pre-training (A) and the post-training (B) fMRI sessions. Medial views of the posterior part of the brain optimally visualize area V1 (green outlines) along the calcarine sulcus. Scale bars show the color-coding for the z-score levels of the activation. Comparison of the pre- to post-training responses shows a dramatic enhancement from negligible activation in V1 before training (A), to a massive task-specific activation as a result of training (B). Note that, interestingly, the extension of the post-training activation approximately corresponds to the spatial extent of the images (∼10° diameter).
Figure 7
Figure 7
Pre/post-training comparison of V1 activation pattern across the three tasks. (A) There was no task-specificity in V1 before training. (B) Remarkably, a clear specialization for MD (red) emerged after training. Bar-graphs show the estimated activation in each hemisphere for each task—E/M, MD, S. The activation levels refer to the beta weights for the event types in the GLM. The dashed lines and the error bars represent confidence intervals for two different forms of statistical comparison of the activation levels. The dashed lines represent the 99% “zeroconfidence interval, within which the activations are not significantly different from zero. The error bars are 99% “differenceconfidence intervals designed to illustrate the t-test to assess the significance of the differences between activation levels in each figure, i.e., the amplitude differences are not significant unless they exceed the confidence intervals for both compared activations.
Figure 8
Figure 8
Response waveform analysis in V1. The average time courses of BOLD activity (black lines) are shown for the sequence of the three task intervals (white bars); the four dark-gray bars indicate the 20 s rest intervals separating E/M, MD, and S tasks. Immature and non-specific transient “bursts” before the CK-training (A), were transformed after training (B) into well-developed waveforms for the memory-drawing MD, in contrast to the loss of any significant response for the non-memory drawing S.
Figure 9
Figure 9
Response waveform analysis in motor cortex. In contrast to area V1, the LH motor cortex M1 (in particular, the region encoding right-hand movement) produced well-formed response waveforms both before training (in A) and after training (in B). As should be expected, these responses were strong and positive for the two right-hand tasks (MD and S), and zero to negative for the left-hand task (E/M). Statistics as in Figure 7, and Materials and Methods.
Figure 10
Figure 10
Representative examples of pre- vs. post-training drawings. The left panels show the respective raised-line models to be drawn. Note the significant advance from practically unrecognizable drawings before training (middle panels) to well-recognizable drawings achieved by this totally blind subject as a result of the Cognitive-Kinesthetic training (right panels).
Figure 11
Figure 11
Re-conceptualization of the visuo-spatial sketchpad as an amodal-spatial sketchpad. Modified schematic of the main modules of Baddeley's classic model of working memory including the visuo-spatial sketchpad [after Baddeley, 2003], where the added “Amodal-Spatial Sketchpad” block depicts our re-conceptualization of the visuo-spatial sketchpad as being accessible to any sensory modality.

References

    1. Adams M. M., Hof P. R., Gattass R., Webster M. J., Ungerleider L. G. (2000). Visual cortical projections and chemoarchitecture of macaque monkey pulvinar J. Comp. Neurol. 419, 377–393
    1. Amedi A., Floel A., Knecht S., Zohary E., Cohen L. G. (2004). Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat. Neurosci. 7, 1266–1270 10.1038/nn1328
    1. Amedi A., Malach R., Pascual-Leone A. (2005). Negative BOLD differentiates visual imagery and perception. Neuron 48, 859–872 10.1016/j.neuron.2005.10.032
    1. Amedi A., Merabet L. B., Camprodon J., Bermpohl F., Fox S., Ronen I., Kim D. S., Pascual-Leone A. (2008). Neural and behavioral correlates of drawing in an early blind painter: a case study. Brain Res. 1242, 252–262 10.1016/j.brainres.2008.07.088
    1. Amedi A., Raz N., Pianka P., Malach R., Zohary E. (2003). Early “visual” cortex activation correlates with superior verbal memory performance in the blind. Nat. Neurosci. 6, 758–766 10.1038/nn1072
    1. Baddeley A. D. (1986). Working Memory. New York, NY: Oxford University Press
    1. Baddeley A. D. (2000). The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4, 417–423
    1. Baddeley A. D. (2003). Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 10.1038/nrn1201
    1. Baddeley A. D., Hitch G. J. (1974). “Working memory,” in The Psychology of Learning and Motivation, Vol. 8, ed Bower G. (San Diego, CA: Academic Press; ), 47–90
    1. Barone P., Batardiere A., Knoblauch K., Kennedy H. (2000). Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J. Neurosci. 20, 3263–3281
    1. Borowsky R., Esopenko C., Cummine J., Sarty G. E. (2007). Neural representations of visual words and objects: a functional MRI study on the modularity of reading and object processing. Brain Topogr. 20, 89–96 10.1007/s10548-007-0034-1
    1. Blasdel G. G., Lund J. S. (1983). Termination of afferent axons in macaque striate cortex. J. Neurosci. 3, 1389–1413
    1. Buchsbaum B. R., D'Esposito M. (2009). “Is there anything special about working memory?” in Neuroimaging of Human Memory, eds Rosler F., Ranganath C., Roder B., Kluwe R. (Oxford: Oxford University Press; ), 255–265
    1. Budd M. L. (1998). Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity. Proc. R. Soc. Lond. B Biol. Sci. 265, 1037–1044 10.1098/rspb.1998.0396
    1. Buechel C., Price C., Frackowiak R. S., Friston K. (1998). Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121, 409–419 10.1093/brain/121.3.409
    1. Burton H., Snyder A. Z., Conturo T. E., Akbudak E., Ollinger J. M., Raichle M. E. (2002). Adaptive changes in early and late blind: a fMRI stud of Braille reading. J. Neurophysiol. 87, 589–607
    1. Cappe C., Barone P. (2005). Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur. J. Neurosci. 22, 2886–2902 10.1111/j.1460-9568.2005.04462.x
    1. Clavagnier S., Falchier A., Kennedy H. (2004). Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn. Affect. Behav. Neurosci. 4, 117–126
    1. Cohen L. G., Celnik P., Pascual-Leone A., Corwell B., Falz L., Dambrosia J. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 10.1038/38278
    1. de Renzi E. (1982). Disorders of Space Exploration and Cognition. New York, NY: Wiley and Sons
    1. deVolder A. G., Bol A., Blin J., Robert A., Arno P., Grandin C. (1997). Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Res. 750, 235–244 10.1016/S0006-8993(96)01352-2
    1. Doty R. W. (1983). Nongeniculate afferents to striate cortex in macaques. J. Comp. Neurol. 218, 159–173 10.1002/cne.902180204
    1. Falchier A., Clavagnier S., Barone P., Kennedy H. (2002). Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749–5759
    1. Ferber S., Mraz R., Baker N., Graham S. J. (2007). Shared and differential neural substrates of copying versus drawing: a functional magnetic resonance imaging study. Neuroreport 18, 1089–1093 10.1097/WNR.0b013e3281ac2143
    1. Florence S. L., Kaas J. H. (1995). Large-scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J. Neurosci. 15, 8083–8095
    1. Gardner H. (1983). Frames of Mind: The Theory of Multiple Intelligences. New York, NY: Basic Books
    1. Gizewski E. R., Gasser T., de Greiff A., Boehm A., Forsting M. (2003). Cross-modal plasticity for sensory and motor activation patterns in blind subjects. Neuroimage 19, 968–975 10.1016/S1053-8119(03)00114-9
    1. Goyal M. S., Hansen P. J., Blakemore C. B. (2006). Tactile perception recruits functionally related visual areas in the late-blind. Neuroreport 17, 1381–1384 10.1097/01.wnr.0000227990.23046.fe
    1. Graham J. (1982). Some topographical connections of the striate cortex with subcortical structures in Macaca fascicularis. Exp. Brain Res. 47, 1–14
    1. Grossi D., Trojano L. (1999). “Constructional apraxia,” in Handbook of Clinical and Experimental Neuropsychology, eds G. Denes and L. Pizzamiglio (Hove: Psychology Press), 441–450
    1. Hamilton R., Keenan J. P., Catala M., Pascual-Leone A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport 11, 237–240
    1. Harrison S. A., Tong F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 10.1038/nature07832
    1. Heller M. A., (ed.). (2000). “Touch, representation and blindness,” in Debates in Psychology Series, (New York, NY: Oxford University Press; ), 67–98
    1. Hendry S. H., Yoshioka T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575–577 10.1126/science.8160015
    1. Ishai A. (2009). “Retrieving pictures from long-term memory,” in Neuroimaging of Human Memory, eds Rosler F., Ranganath C., Roder B., Kluwe R. (New York, NY: Oxford University Press; ), 265–281
    1. Ishai A., Sagi D. (1995). Common mechanisms of visual imagery and perception. Science 268, 1771–1974
    1. Jones E. G. (2000). Plasticity and neuroplasticity. J. Hist. Neurosci. 9, 37–39
    1. Kennedy J. (1993). Drawing and the Blind. New Haven, CT: Yale University Press
    1. Kennedy J. M. (2000). “Recognizing outline pictures via touch: alignment theory,” in Touch, Representation and Blindness, ed Heller M. A. (Oxford: Oxford University Press; ), 67–98
    1. Kennedy J. M., Igor J. (2003). Haptics and projection: drawings by Tracy, a blind adult. Perception 32, 1059–1071
    1. Kennedy J. M., Juricevic I. (2006). Foreshortening, convergence and drawings from a blind adult. Perception 35, 847–851
    1. Kosslyn S. M., Ganis G., Thompson W. L. (2001). Neural foundations of imagery. Nat. Rev. Neurosci. 2, 635–642 10.1038/35090055
    1. Kosslyn M. S., Thompson W. L. (2003). When is early visual cortex activated during visual mental imagery? Psychol. Bull. 129, 723–746 10.1037/0033-2909.129.5.723
    1. Kreiman G., Koch C., Freid I. (2000). Category-specific visual responses of single neurons in the human media temporal cortex. Nat. Neurosci. 3, 946–953 10.1038/78868
    1. Lacey S., Tal N., Amedi A., Sathian K. (2009). A putative model of multisensory object representation. Brain Topogr. 21, 269–274 10.1007/s10548-009-0087-4
    1. Lachica E. A., Casagrande V. A. (1992). Direct W-like geniculate projections to the cytochrome-oxidase (CO) blobs in primate visual cortex: axon morphology. J. Comp. Neurol. 319, 141–158 10.1002/cne.903190112
    1. Lee B. H., Chin J., Kang S. J., Kim E-J., Park K. C., Na D. L. (2004). Mechanism of the closing-in phenomenon in a figure copying task in Alzheimer's disease patients. Neurocase 10, 393–397 10.1080/13554790490892194
    1. Lee T. S., Mumford D. (2003). Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 10.1364/JOSAA.20.001434
    1. Lee T. S., Mumford D., Romero R., Lamme V. A. F. (1998). The role of the primary visual cortex in higher level vision. Vision Res. 38, 2429–2454 10.1016/S0042-6989(97)00464-1
    1. Likova L. T. (2010a). The primary visual cortex as a modality-independent ‘screen’ for working memory. J. Vis. 10, 776.
    1. Likova L. T. (2010b). “Drawing in the blind and the sighted as a probe of cortical reorganization,” in Human Vision and Electronic Imaging, eds Rogowitz B. E., Pappas T. N. Proc. SPIE, 7527, 752708–752714
    1. Likova L. T., Nicholas S. N. (2010c). Early visual cortex as an amodal-memory “screen”: evidence from fMRI in the blindfolded and the congenitally blind individuals. Society for Neuroscience Annual Meeting, San Diego, CA.
    1. Likova L. T. (2011). Dynamics of cross-modal plasticity in the human brain. Perception 40, 14
    1. Likova L. T. (2012). “The spatiotopic ‘visual’ cortex of the blind,” in Proceeding of the SPIE/HVEI, eds Rogowitz B. E., Pappas T. N., de Ridder H. 7529, 8291–8317
    1. Loomis K. M., Klatzky R. (2008). “Functional equivalence of spatial representations from vision, touch, and hearing: relevance for sensory substitutions,” in Touch, Representation and Blindness, ed Heller M. A. (New York, NY: Oxford University Press; ), 67–98
    1. Makuuchi M., Kaminaga T., Sugishita A. (2003). Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain Res. Cogn. Brain Res. 16, 338–347 10.1016/S0926-6410(02)00302-6
    1. Mayer-Gross W. (1935). Some observations on apraxia. Proc. R. Soc. Med. 28, 1203–1212
    1. Mechelli A., Price C. J., Friston K. J., Ishai A. (2004). Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb. Cortex 14, 1256–1265 10.1093/cercor/bhh087
    1. Merabet L., Rizzo J., Amedi A., Somers D., Pascual-Leone A. (2005). What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat. Rev. Neurosci. 6, 71–77 10.1038/nrn1586
    1. Merabet L. B., Pitskel N. B., Amedi A., Pascual-Leone A. (2008a). “The plastic brain in blind individuals: the cause of disability and the opportunity for rehabilitation,” in Blindness and Brain Plasticity in Navigation and Object Perception, eds Rieser J. J., Ashmead D. H., Ebner F. F., Corn A. L. (London: Lawrence Erlbaum Associates; ), 23–43
    1. Merabet L. B., Hamilton R., Schlaug G., Swisher J. D., Kiriakopoulos E. T., Pitskel N. B., Kauffman T., Pascual-Leone A. (2008b). Rapid and reversible recruitment of early visual cortex for touch. PLoS One 3:e3046 10.1371/journal.pone.0003046
    1. Merabet L. B., Swisher J. D., McMains S. A., Halko M. A., Amedi A., Pascual-Leone A., Somers D. C. (2007). Combined activation and deactivation of visual cortex during tactile sensory processing. J. Neurophysiol. 97, 1633–1641 10.1152/jn.00806.2006
    1. Mumford D. (1991). On the computational architecture of the neocortex I: the role of the thalamo-cortical loop. Biol. Cyber. 65, 135–145
    1. Mumford D. (1996). “Commentary on banishing the homunculus by H. Barlow,” in Perception as Bayesian Inference, eds Knill D. C., Richards W. (Cambridge, UK: Cambridge University Press; ), 501–504
    1. O'Craven K., Kanwisher N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Nature 331, 68–70
    1. Ogawa K., Inui T. (2009). The role of the posterior parietal cortex in drawing by copying. Neuropsychologia 47, 1013–1022 10.1016/j.neuropsychologia.2008.10.022
    1. Ogren M., Hendrickson A. (1976). Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: evidence for a reciprocal pulvinar connection. Exp. Neurol. 53, 780–800
    1. Pascual-Leone A., Amedi A., Fregni F., Merabet L. (2005). The plastic human brain. Annu. Rev. Neurosci. 28, 377–401 10.1146/annurev.neuro.27.070203.144216
    1. Perkel D. J., Bullier J., Kennedy H. (1986). Topography of the afferent connectivity of area 17 of the macaque monkey: a double labeling study. J. Comp. Neurol. 253, 374–402 10.1002/cne.902530307
    1. Piercy M., Hecaen H., Ajuriaguerra J. (1960). Constructional apraxia associated with unilateral cerebral lesion—left and right-sided cases compared. Brain 83, 225–242 10.1093/brain/83.2.225
    1. Ponchillia P. E. (2008). “Non-visual sports and arts: fertile substrates for the growth of knowledge about brain plasticity in people who are blind or have low vision,” in Blindness and Brain Plasticity in Navigation and Object Perception, eds Rieser J. J., Ashmead D. H., Ebner F. F., Corn A. L. (London: Lawrence Erlbaum Associates; ), 283–313
    1. Ptito M., Fumal A., de Noordhout A. M., Schoenen J., Gjedde A., Kupers R. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers. Exp. Brain Res. 184, 193–200 10.1007/s00221-007-1091-0
    1. Raineteau O., Schwab M. E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 10.1038/35067570
    1. Ranganath H. (2009). “Interrelationships between working memory and long-term memory,” in Neuroimaging of Human Memory, eds Rosler F., Ranganath C., Roder B., Kluwe R. (Oxford: Oxford University Press; ), 227–255
    1. Raz N., Amedi A., Zohary E. (2005). V1 activation in congenitally blind V1 activation in congenitally blind humans is associated with episodic retrieval. Cereb. Cortex 15, 1459–1468 10.1093/cercor/bhi026
    1. Rezak M., Benevento L. A. (1979). A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res. 167, 19–40 10.1016/0006-8993(79)90260-9
    1. Rockland K. S. (1994). “The organization of feedback connections from areaV2 (18) to V1 (17),” in Cerebral Cortex, vol. 10: Primary Visual Cortex in Primates, eds Peters A., Rockland K. S. (NewYork, NY: Plenum; ), 261–299
    1. Rockland K. S., Ojima H. (2003). Multisensory convergence in calcarine visual areas in macaque monkey. Int. J. Psychophysiol. 50, 19–26 10.1016/S0167-8760(03)00121-1
    1. Sadato N., Pascual-Leone A., Grafman J., Ibanez V., Deiber M. P., Dold G., Hallett M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 10.1038/380526a0
    1. Schmolesky M. (2000). The primary visual cortex. Available from:
    1. Shipp S., Zeki S. M. (1989). The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur. J. Neurosci. 1, 309–332
    1. Super H. (2003). Working memory in the primary visual cortex. Arch. Neurol. 60, 809–812 10.1001/archneur.60.6.809
    1. Super H., Spekreijse H., Lamme V. A. F. (2001a). A neural correlate of working memory in the monkey primary visual cortex. Science 293, 120–124 10.1126/science.1060496
    1. Super H., Spekreijse H., Lamme V. A. F. (2001b). Two distinct models of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 10.1038/85170
    1. Sur M., Leamey C. A. (2001). Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 10.1038/35067562
    1. Suzuki W., Saleem K. S., Tanaka K. (2000). Divergent backward projections from the anterior part of the inferotemporal cortex (area TE) in the macaque. J. Comp. Neurol. 422, 206–228
    1. Theoret H., Merabet L., Pascual-Leone A. (2004). Behavioral and neuroplastic changes in the blind: evidence for functionally relevant cross-modal interactions. J. Physiol. Paris 98, 221–233 10.1016/j.jphysparis.2004.03.009
    1. Tong F. (2003). Primary visual cortex and visual awareness. Nat. Rev. Neurosci. 3, 219–229 10.1038/nrn1055
    1. Uhl F., Franzen P., Lindinger G., Lang W., Deecke L. (1991). On the functionality of the visually deprived occipital cortex in early blind persons. Neurosci. Lett. 124, 256–259
    1. Uhl F., Franzen P., Podreka I., Steiner M., Deecke L. (1993). Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans. Neurosci. Lett. 150, 162–164
    1. Ungerleider L. G., Desimone R. (1986a). Projections to the superior temporal sulcus from the central and peripheral field representations of Vl and V2. J. Comp. Neurol. 248, 147–163 10.1002/cne.902480202
    1. Ungerleider L. G., Desimone R. (1986b). Cortical connections of visual area MT in the macaque. J. Comp. Neurol. 248, 190–222 10.1002/cne.902480204
    1. van Brussel L., Gerits A., Arckens L. (2011). Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb. Cortex 21, 2133–2146 10.1093/cercor/bhq286
    1. Voss P., Gougoux F., Lassonde M., Zatorre R. J., Lepore F. (2006). A positron emission tomography study during auditory localization by late-onset blind individuals. Neuroreport 17, 383–388 10.1097/01.wnr.0000204983.21748.2d
    1. Williams M., Baker C. I., Opde Beeck H. P., Shim W. M., Dang S., Triantafyllou C., Kanwisher N. (2008). Feedback of visual object information to foveal retinotopic cortex. Nat. Neurosci. 11, 1439–1445 10.1038/nn.2218

Source: PubMed

3
S'abonner