Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks

Fabian Herold, Patrick Wiegel, Felix Scholkmann, Angelina Thiers, Dennis Hamacher, Lutz Schega, Fabian Herold, Patrick Wiegel, Felix Scholkmann, Angelina Thiers, Dennis Hamacher, Lutz Schega

Abstract

Safe locomotion is a crucial aspect of human daily living that requires well-functioning motor control processes. The human neuromotor control of daily activities such as walking relies on the complex interaction of subcortical and cortical areas. Technical developments in neuroimaging systems allow the quantification of cortical activation during the execution of motor tasks. Functional near-infrared spectroscopy (fNIRS) seems to be a promising tool to monitor motor control processes in cortical areas in freely moving subjects. However, so far, there is no established standardized protocol regarding the application and data processing of fNIRS signals that limits the comparability among studies. Hence, this systematic review aimed to summarize the current knowledge about application and data processing in fNIRS studies dealing with walking or postural tasks. Fifty-six articles of an initial yield of 1420 publications were reviewed and information about methodology, data processing, and findings were extracted. Based on our results, we outline the recommendations with respect to the design and data processing of fNIRS studies. Future perspectives of measuring fNIRS signals in movement science are discussed.

Keywords: functional near-infrared spectroscopy; motor control; optical neuroimaging; posture; walking.

Figures

Fig. 1
Fig. 1
Search process and identification of relevant studies.
Fig. 2
Fig. 2
Overview on (a) used source–detector separation and (b) DPF values in the reviewed studies.
Fig. 3
Fig. 3
Schematic illustration of the indirect and direct locomotor pathways as a function of the degree of automaticity in motor control.

References

    1. Hamacher D., et al. , “Brain activity during walking: a systematic review,” Neurosci. Biobehav. Rev. 57, 310–327 (2015).10.1016/j.neubiorev.2015.08.002
    1. Holtzer R., et al. , “Neuroimaging of mobility in aging: a targeted review,” J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 69(11), 1375–1388 (2014).10.1093/gerona/glu052
    1. Jacobs J. V., Horak F. B., “Cortical control of postural responses,” J. Neural Transm. 114(10), 1339–1348 (2007).10.1007/s00702-007-0657-0
    1. Takakusaki K., “Neurophysiology of gait: from the spinal cord to the frontal lobe,” Mov. Disord.: Off. J. Mov. Disord. Soc. 28(11), 1483–1491 (2013).10.1002/mds.v28.11
    1. Rosso A. L., et al. , “Higher step length variability indicates lower gray matter integrity of selected regions in older adults,” Gait Posture 40(1), 225–230 (2014).10.1016/j.gaitpost.2014.03.192
    1. Beauchet O., et al. , “Higher gait variability is associated with decreased parietal gray matter volume among healthy older adults,” Brain Topogr. 27(2), 293–295 (2014).BRTOEZ10.1007/s10548-013-0293-y
    1. Tian Q., et al. , “Lower gray matter integrity is associated with greater lap time variation in high-functioning older adults,” Exp. Gerontol. 77, 46–51 (2016).EXGEAB10.1016/j.exger.2016.02.009
    1. Rosano C., et al. , “Slower gait, slower information processing and smaller prefrontal area in older adults,” Age Ageing 41(1), 58–64 (2011).AANGAH10.1093/ageing/afr113
    1. Callisaya M. L., et al. , “Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people,” PLoS One 9(1), e84909 (2014).POLNCL10.1371/journal.pone.0084909
    1. Boisgontier M. P., et al. , “Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling,” Gait Posture 45, 143–150 (2016).10.1016/j.gaitpost.2016.01.019
    1. Taubert M., et al. , “Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections,” J. Neurosci. 30(35), 11670–11677 (2010).JNRSDS10.1523/JNEUROSCI.2567-10.2010
    1. Taubert M., et al. , “Rapid and specific gray matter changes in M1 induced by balance training,” NeuroImage 133, 399–407 (2016).NEIMEF10.1016/j.neuroimage.2016.03.017
    1. Taubert M., Villringer A., Ragert P., “Learning-related gray and white matter changes in humans: an update,” Neuroscientist 18(4), 320–325 (2012).10.1177/1073858411419048
    1. Raz N., et al. , “Regional brain changes in aging healthy adults: general trends, individual differences and modifiers,” Cereb. Cortex 15(11), 1676–1689 (2005).10.1093/cercor/bhi044
    1. Raz N., et al. , “Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter,” Cereb. Cortex 7(3), 268–282 (1997).10.1093/cercor/7.3.268
    1. Seidler R. D., et al. , “Motor control and aging: links to age-related brain structural, functional, and biochemical effects,” Neurosci. Biobehav. Rev. 34(5), 721–733 (2010).NBREDE10.1016/j.neubiorev.2009.10.005
    1. Perrey S., “Possibilities for examining the neural control of gait in humans with fNIRS,” Front. Physiol. 5, 282 (2014).FROPBK10.3389/fphys.2014.00204
    1. Cutini S., Brigadoi S., “Unleashing the future potential of functional near-infrared spectroscopy in brain sciences,” J. Neurosci. Methods 232, 152–156 (2014).JNMEDT10.1016/j.jneumeth.2014.05.024
    1. Bunce S. C., et al. , “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).IEMBDE10.1109/MEMB.2006.1657788
    1. Saliba J., et al. , “Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients,” Hear. Res. 338, 64–75 (2016).HERED310.1016/j.heares.2016.02.005
    1. Cutini S., Moro S., Bisconti S., “Review: functional near infrared optical imaging in cognitive neuroscience: an introductory review,” J. Near Infrared Spectrosc. 20(1), 75 (2012).10.1255/jnirs.969
    1. Lloyd-Fox S., Blasi A., Elwell C. E., “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev. 34(3), 269–284 (2010).NBREDE10.1016/j.neubiorev.2009.07.008
    1. Thompson J., Sebastianelli W., Slobounov S., “EEG and postural correlates of mild traumatic brain injury in athletes,” Neurosci. Lett. 377(3), 158–163 (2005).NELED510.1016/j.neulet.2004.11.090
    1. Smith M., “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. R. Soc. A 369(1955), 4452–4469 (2011).10.1098/rsta.2011.0242
    1. Leff D. R., et al. , “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” NeuroImage 54(4), 2922–2936 (2011).NEIMEF10.1016/j.neuroimage.2010.10.058
    1. Villringer A., Chance B., “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).TNSCDR10.1016/S0166-2236(97)01132-6
    1. Perrey S., “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).10.1016/j.ymeth.2008.04.005
    1. Huneau C., Benali H., Chabriat H., “Investigating human neurovascular coupling using functional neuroimaging: a critical review of dynamic models,” Front. Neurosci. 9, e1002435 (2015).10.3389/fnins.2015.00467
    1. Liao L.-D., et al. , “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” BioMed. Eng. OnLine 12(1), 38 (2013).10.1186/1475-925X-12-38
    1. Obrig H., Villringer A., “Beyond the visible imaging the human brain with light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).10.1097/01.WCB.0000043472.45775.29
    1. Obrig H., et al. , “Near-infrared spectroscopy. Does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2–3), 125–142 (2000).IJPSEE10.1016/S0167-8760(99)00048-3
    1. Izzetoglu M., et al. , “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).10.1109/MEMB.2007.384094
    1. Scholkmann F., et al. , “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).NEIMEF10.1016/j.neuroimage.2013.05.004
    1. León-Carrión J., León-Domínguez U., “Functional near-infrared spectroscopy (fNIRS): principles and neuroscientific applications,” in Neuroimaging Methods, Bright P., Ed., pp. 48–74, INTECH Open Access Publisher, Rijeka, Croatia: (2017).
    1. Ferrari M., Quaresima V., “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).NEIMEF10.1016/j.neuroimage.2012.03.049
    1. Quaresima V., Bisconti S., Ferrari M., “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang. 121(2), 79–89 (2012).10.1016/j.bandl.2011.03.009
    1. Minagawa-Kawai Y., et al. , “Optical imaging of infants’ neurocognitive development: recent advances and perspectives,” Dev. Neurobiol. 68(6), 712–728 (2008).10.1002/(ISSN)1932-846X
    1. Shibasaki H., “Human brain mapping: hemodynamic response and electrophysiology,” Clin. Neurophysiol. 119(4), 731–743 (2008).CNEUFU10.1016/j.clinph.2007.10.026
    1. Wilcox T., Biondi M., “fNIRS in the developmental sciences,” Wiley Interdiscip. Rev. Cognit. Sci. 6(3), 263–283 (2015).10.1002/wcs.1343
    1. Gervain J., et al. , “Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium,” Dev. Cognit. Neurosci. 1(1), 22–46 (2011).10.1016/j.dcn.2010.07.004
    1. Piper S. K., et al. , “A wearable multi-channel fNIRS system for brain imaging in freely moving subjects,” NeuroImage 85, 64–71 (2014).NEIMEF10.1016/j.neuroimage.2013.06.062
    1. Obrig H., “NIRS in clinical neurology—a ‘promising’ tool?” NeuroImage 85, 535–546 (2014).NEIMEF10.1016/j.neuroimage.2013.03.045
    1. Mihara M., Miyai I., “Review of functional near-infrared spectroscopy in neurorehabilitation,” Neurophotonics 3(3), 031414 (2016).10.1117/1.NPh.3.3.031414
    1. Gramigna V., et al. , “Near-infrared spectroscopy in gait disorders. Is it time to begin?,” Neurorehabil. Neural Repair 31(5), 402–412 (2017).10.1177/1545968317693304
    1. Tachtsidis I., Scholkmann F., “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 030401 (2016).10.1117/1.NPh.3.3.030401
    1. Tanaka E., Saegusa S., Yuge L., “Development of a whole body motion support type mobile suit and evaluation of cerebral activity corresponding to the cortical motor areas,” J. Adv. Mech. Des. Syst. Manuf. 7(1), 82–94 (2013).10.1299/jamdsm.7.82
    1. Sukal-Moulton T., et al. , “Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks,” J. Visualized Exp. 5 (94), 52391 (2014).10.3791/52391
    1. Pinti P., et al. , “Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks,” J. Visualized Exp. 2(106), e53336 (2015).10.3791/53336
    1. Suzuki S., Harashima F., Furuta K., “Human control law and brain activity of voluntary motion by utilizing a balancing task with an inverted pendulum,” Adv. Hum.–Comput. Interact. 2010(2), 1–16 (2010).10.1155/2010/215825
    1. Imaoka S., Matubara E., “Postural adjustment mechanisms of cerebrovascular disease patients: a comparison with healthy adults using near-infrared spectroscopy,” Rigakuryoho Kagaku 30(6), 981–985 (2015).10.1589/rika.30.981
    1. Naitou I., et al. , “The dynamics of blood oxygen in the brain of healthy young adults in the performance of various walking styles,” Rigakuryoho Kagaku 28(4), 435–440 (2013).10.1589/rika.28.435
    1. Herold F., et al. , Appendix to “Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks,” (2017).
    1. Harada T., et al. , “Gait capacity affects cortical activation patterns related to speed control in the elderly,” Exp. Brain Res. 193(3), 445–454 (2009).10.1007/s00221-008-1643-y
    1. Koenraadt K. L., et al. , “Cortical control of normal gait and precision stepping: an fNIRS study,” NeuroImage 85, 415–422 (2014).NEIMEF10.1016/j.neuroimage.2013.04.070
    1. Kurz M. J., Wilson T. W., Arpin D. J., “Stride-time variability and sensorimotor cortical activation during walking,” NeuroImage 59(2), 1602–1607 (2012).NEIMEF10.1016/j.neuroimage.2011.08.084
    1. Kurz M. J., Wilson T. W., Arpin D. J., “An fNIRS exploratory investigation of the cortical activity during gait in children with spastic diplegic cerebral palsy,” Brain Dev. 36(10), 870–877 (2014).NTHAA710.1016/j.braindev.2014.01.003
    1. Meester D., et al. , “Associations between prefrontal cortex activation and H-reflex modulation during dual task gait,” Front. Hum. Neurosci. 8, 78 (2014).10.3389/fnhum.2014.00078
    1. Mihara M., et al. , “Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke?” NeuroImage 37(4), 1338–1345 (2007).NEIMEF10.1016/j.neuroimage.2007.06.014
    1. Miyai I., et al. , “Effect of body weight support on cortical activation during gait in patients with stroke,” Exp. Brain Res. 169(1), 85–91 (2006).10.1007/s00221-005-0123-x
    1. Miyai I., et al. , “Longitudinal optical imaging study for locomotor recovery after stroke,” Stroke 34(12), 2866–2870 (2003).SJCCA710.1161/01.STR.0000100166.81077.8A
    1. Miyai I., et al. , “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).10.1002/(ISSN)1531-8249
    1. Suzuki M., et al. , “Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study,” NeuroImage 23(3), 1020–1026 (2004).NEIMEF10.1016/j.neuroimage.2004.07.002
    1. Fraser S. A., et al. , “Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load,” Front. Aging Neurosci. 8, 240 (2016).10.3389/fnagi.2016.00240
    1. Metzger F. G., et al. , “Functional brain imaging of walking while talking—an fNIRS study,” Neuroscience 343, 85–93 (2017).10.1016/j.neuroscience.2016.11.032
    1. Al-Yahya E., et al. , “Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study,” Neurorehabil. Neural Repair 30(6), 591–599 (2016).10.1177/1545968315613864
    1. Clark D. J., et al. , “Enhanced somatosensory feedback reduces prefrontal cortical activity during walking in older adults,” J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 69(11), 1422–1428 (2014).10.1093/gerona/glu125
    1. Suzuki M., et al. , “Activities in the frontal cortex and gait performance are modulated by preparation: an fNIRS study,” NeuroImage 39(2), 600–607 (2008).NEIMEF10.1016/j.neuroimage.2007.08.044
    1. Eggenberger P., et al. , “Exergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults,” Front. Aging Neurosci. 8, 66 (2016).10.3389/fnagi.2016.00066
    1. Atsumori H., et al. , “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15(4), 046002 (2010).JBOPFO10.1117/1.3462996
    1. Caliandro P., et al. , “Prefrontal cortex controls human balance during overground ataxic gait,” Restor. Neurol. Neurosci. 30(5), 397–405 (2012).10.3233/RNN-2012-120239
    1. Caliandro P., et al. , “Prefrontal cortex as a compensatory network in ataxic gait: a correlation study between cortical activity and gait parameters,” Restor. Neurol. Neurosci. 33(2), 177–187 (2015).10.3233/RNN-140449
    1. Doi T., et al. , “Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study,” Aging Clin. Exp. Res. 25(5), 539–544 (2013).10.1007/s40520-013-0119-5
    1. Holtzer R., et al. , “fNIRS study of walking and walking while talking in young and old individuals,” J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 66A(8), 879–887 (2011).10.1093/gerona/glr068
    1. Holtzer R., et al. , “Online fronto-cortical control of simple and attention-demanding locomotion in humans,” NeuroImage 112, 152–159 (2015).NEIMEF10.1016/j.neuroimage.2015.03.002
    1. Holtzer R., et al. , “Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis,” Brain Topogr. 29(2), 334–343 (2016).BRTOEZ10.1007/s10548-015-0465-z
    1. Lu C.-F., et al. , “Maintaining gait performance by cortical activation during dual-task interference: a functional near-infrared spectroscopy study,” PLoS One 10(6), e0129390 (2015).POLNCL10.1371/journal.pone.0129390
    1. Mirelman A., et al. , “Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults,” J. Neuroeng. Rehabil. 11, 85 (2014).10.1186/1743-0003-11-85
    1. Saitou H., et al. , “Cerebral blood volume and oxygenation among poststroke hemiplegic patients: effects of 13 rehabilitation tasks measured by near-infrared spectroscopy,” Arch. Phys. Med. Rehabil. 81(10), 1348–1356 (2000).APMHAI10.1053/apmr.2000.9400
    1. Lin M.-I. B., Lin K.-H., “Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics,” Front. Behav. Neurosci. 10, 92 (2016).10.3389/fnbeh.2016.00092
    1. Maidan I., et al. , “The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an fNIRS study,” Neurorehabil. Neural Repair 30(10), 963–971 (2016).10.1177/1545968316650426
    1. Nieuwhof F., et al. , “Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease. Feasibility of using a new portable fNIRS device,” Pilot Feasibility Stud. 2(1), 918719 (2016).10.1186/s40814-016-0099-2
    1. Hernandez M. E., et al. , “Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis,” J. Neurol. Sci. 370, 277–283 (2016).JNSCAG10.1016/j.jns.2016.10.002
    1. Verghese J., et al. , “Brain activation in high-functioning older adults and falls: prospective cohort study,” Neurology 88(2), 191–197 (2016).NEURAI10.1212/WNL.0000000000003421
    1. Holtzer R., et al. , “Stress and gender effects on prefrontal cortex oxygenation levels assessed during single and dual-task walking conditions,” Eur. J. Neurosci. 45(5), 660–670 (2016).10.1111/ejn.13518
    1. Holtzer R., et al. , “Interactions of subjective and objective measures of fatigue defined in the context of brain control of locomotion,” J. Gerontol. Ser. A Biol. Sci. Med. Sci. 72(3), 417–423 (2017).10.1093/gerona/glw167
    1. Clark D. J., et al. , “Utilization of central nervous system resources for preparation and performance of complex walking tasks in older adults,” Front. Aging Neurosci. 6, 217 (2014).10.3389/fnagi.2014.00217
    1. Osofundiya O., et al. , “Obesity-specific neural cost of maintaining gait performance under complex conditions in community-dwelling older adults,” Clin. Biomech. 35, 42–48 (2016).10.1016/j.clinbiomech.2016.03.011
    1. McKendrick R., et al. , “Prefrontal hemodynamics of physical activity and environmental complexity during cognitive work,” Hum. Factors 59(1), 147–162 (2017).HUFAA610.1177/0018720816675053
    1. Takeuchi N., et al. , “Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking,” BMC Neurosci. 17(1), 9 (2016).10.1186/s12868-016-0244-0
    1. Maidan I., et al. , “Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures,” J. Neurol. 262(4), 899–908 (2015).10.1007/s00415-015-7650-6
    1. Huppert T., et al. , “Measurement of brain activation during an upright stepping reaction task using functional near-infrared spectroscopy,” Hum. Brain Mapp. 34(11), 2817–2828 (2013).10.1002/hbm.22106
    1. Karim H., et al. , “Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy,” NeuroImage 74, 318–325 (2013).NEIMEF10.1016/j.neuroimage.2013.02.010
    1. Mahoney J. R., et al. , “The role of prefrontal cortex during postural control in Parkinsonian syndromes a functional near-infrared spectroscopy study,” Brain Res. 1633, 126–138 (2016).BRREAP10.1016/j.brainres.2015.10.053
    1. Mihara M., et al. , “Role of the prefrontal cortex in human balance control,” NeuroImage 43(2), 329–336 (2008).NEIMEF10.1016/j.neuroimage.2008.07.029
    1. Mihara M., et al. , “Cortical control of postural balance in patients with hemiplegic stroke,” NeuroReport 23(5), 314–319 (2012).NERPEZ10.1097/WNR.0b013e328351757b
    1. Takakura H., et al. , “Cerebral hemodynamic responses during dynamic posturography. Analysis with a multichannel near-infrared spectroscopy system,” Front. Hum. Neurosci. 9, 620 (2015).10.3389/fnhum.2015.00620
    1. Karim H., et al. , “Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system,” Gait Posture 35(3), 367–372 (2012).10.1016/j.gaitpost.2011.10.007
    1. Basso Moro S., et al. , “A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study,” NeuroImage 85(Pt 1), 451–460 (2014).NEIMEF10.1016/j.neuroimage.2013.05.031
    1. Ferrari M., et al. , “Prefrontal cortex activated bilaterally by a tilt board balance task: a functional near-infrared spectroscopy study in a semi-immersive virtual reality environment,” Brain Topogr. 27(3), 353–365 (2014).BRTOEZ10.1007/s10548-013-0320-z
    1. Herold F., et al. , “Cortical activation during balancing on a balance board,” Hum. Mov. Sci. 51, 51–58 (2017).HMSCDO10.1016/j.humov.2016.11.002
    1. Fujita H., et al. , “Role of the frontal cortex in standing postural sway tasks while dual-tasking: a functional near-infrared spectroscopy study examining working memory capacity,” BioMed. Res. Int. 2016(5), 1–10 (2016).10.1155/2016/7053867
    1. Fujimoto H., et al. , “Cortical changes underlying balance recovery in patients with hemiplegic stroke,” NeuroImage 85, 547–554 (2014).NEIMEF10.1016/j.neuroimage.2013.05.014
    1. Lin C.-C., et al. , “Functional near-infrared spectroscopy (fNIRS) brain imaging of multi-sensory integration during computerized dynamic posturography in middle-aged and older adults,” Exp. Brain Res. 235(4), 1247–1256 (2017).EXBRAP10.1007/s00221-017-4893-8
    1. Wang B., et al. , “Posture-related changes in brain functional connectivity as assessed by wavelet phase coherence of NIRS signals in elderly subjects,” Behav. Brain Res. 312, 238–245 (2016).BBREDI10.1016/j.bbr.2016.06.037
    1. Beurskens R., et al. , “Age-related changes in prefrontal activity during walking in dual-task situations: a fNIRS study,” Int. J. Psychophysiol. 92(3), 122–128 (2014).IJPSEE10.1016/j.ijpsycho.2014.03.005
    1. Kim H. Y., et al. , “Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: a functional near-infrared spectroscopy neuroimaging study,” NeuroRehabilitation 38(2), 171–178 (2016).10.3233/NRE-161307
    1. Miyai I., et al. , “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” NeuroImage 14(5), 1186–1192 (2001).NEIMEF10.1006/nimg.2001.0905
    1. Helmich I., Berger A., Lausberg H., “Neural control of posture in individuals with persisting postconcussion symptoms,” Med. Sci. Sports Exercise 48(12), 2362–2369 (2016).MSPEDA10.1249/MSS.0000000000001028
    1. Strangman G., Franceschini M. A., Boas D. A., “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” NeuroImage 18(4), 865–879 (2003).NEIMEF10.1016/S1053-8119(03)00021-1
    1. Scholkmann F., Wolf M., “General equation for the differential pathlength factor of the frontal human head depending on wavelength and age,” J. Biomed. Opt. 18(10), 105004 (2013).JBOPFO10.1117/1.JBO.18.10.105004
    1. Huppert T. J., et al. , “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280 (2009).APOPAI10.1364/AO.48.00D280
    1. Vanderwert R. E., Nelson C. A., “The use of near-infrared spectroscopy in the study of typical and atypical development,” NeuroImage 85(Pt 1), 264–271 (2014).NEIMEF10.1016/j.neuroimage.2013.10.009
    1. Killingsworth M. A., Gilbert D. T., “A wandering mind is an unhappy mind,” Science 330(6006), 932–932 (2010).SCIEAS10.1126/science.1192439
    1. Berthie G., et al. , “The restless mind while driving: drivers’ thoughts behind the wheel,” Accid. Anal. Prev. 76, 159–165 (2015).10.1016/j.aap.2015.01.005
    1. Galera C., et al. , “Mind wandering and driving: responsibility case–control study,” BMJ 345, e8105 (2012).10.1136/bmj.e8105
    1. Lin C. T., et al. , “Mind-wandering tends to occur under low perceptual demands during driving,” Sci. Rep. 6, 21353 (2016).10.1038/srep21353
    1. Spronken M., et al. , “Temporal focus, temporal distance, and mind-wandering valence: results from an experience sampling and an experimental study,” Conscious Cognit. 41, 104–118 (2016).10.1016/j.concog.2016.02.004
    1. Mason M. F., et al. , “Wandering minds: the default network and stimulus-independent thought,” Science 315(5810), 393–395 (2007).SCIEAS10.1126/science.1131295
    1. Fox K. C., et al. , “Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports,” Front. Hum. Neurosci. 7, 412 (2013).10.3389/fnhum.2013.00412
    1. Durantin G., Dehais F., Delorme A., “Characterization of mind wandering using fNIRS,” Front. Syst. Neurosci. 9, 98 (2015).10.3389/fnsys.2015.00045
    1. Corbeil P., et al. , “Perturbation of the postural control system induced by muscular fatigue,” Gait Posture 18(2), 92–100 (2003).10.1016/S0966-6362(02)00198-4
    1. Gribble P. A., Hertel J., “Effect of lower-extremity muscle fatigue on postural control,” Arch. Phys. Med. Rehabil. 85(4), 589–592 (2004).APMHAI10.1016/j.apmr.2003.06.031
    1. Helbostad J. L., et al. , “Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: a systematic literature review,” BMC Geriatr. 10, 56 (2010).10.1186/1471-2318-10-56
    1. Paillard T., “Effects of general and local fatigue on postural control: a review,” Neurosci. Biobehav. Rev. 36(1), 162–176 (2012).NBREDE10.1016/j.neubiorev.2011.05.009
    1. Salavati M., et al. , “Changes in postural stability with fatigue of lower extremity frontal and sagittal plane movers,” Gait Posture 26(2), 214–218 (2007).10.1016/j.gaitpost.2006.09.001
    1. Yaggie J. A., McGregor S. J., “Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits,” Arch. Phys. Med. Rehabil. 83(2), 224–228 (2002).APMHAI10.1053/apmr.2002.28032
    1. Shortz A. E., et al. , “The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women,” J. NeuroEng. Rehabil. 12, 115 (2015).10.1186/s12984-015-0108-3
    1. Latash M. L., Scholz J. P., Schöner G., “Motor control strategies revealed in the structure of motor variability,” Exercise Sport Sci. Rev. 30(1), 26–31 (2002).ESSRB810.1097/00003677-200201000-00006
    1. Harbourne R. T., Stergiou N., “Movement variability and the use of nonlinear tools: principles to guide physical therapist practice,” Phys. Ther. 89(3), 267–282 (2009).10.2522/ptj.20080130
    1. Stergiou N., Harbourne R., Cavanaugh J., “Optimal movement variability: a new theoretical perspective for neurologic physical therapy,” J. Neurol. Phys. Ther. 30(3), 120–129 (2006).10.1097/01.NPT.0000281949.48193.d9
    1. Stergiou N., Decker L. M., “Human movement variability, nonlinear dynamics, and pathology: is there a connection?” Hum. Mov. Sci. 30(5), 869–888 (2011).HMSCDO10.1016/j.humov.2011.06.002
    1. Hamacher D., et al. , “Kinematic measures for assessing gait stability in elderly individuals: a systematic review,” J. R. Soc. Interface 8(65), 1682–1698 (2011).10.1098/rsif.2011.0416
    1. König N., et al. , “Revealing the quality of movement: a meta-analysis review to quantify the thresholds to pathological variability during standing and walking,” Neurosci. Biobehav. Rev. 68, 111–119 (2016).NBREDE10.1016/j.neubiorev.2016.03.035
    1. Hollman J. H., et al. , “Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals,” Gait Posture 32(1), 23–28 (2010).10.1016/j.gaitpost.2010.02.017
    1. Riva F., Bisi M. C., Stagni R., “Gait variability and stability measures: minimum number of strides and within-session reliability,” Comput. Biol. Med. 50, 9–13 (2014).CBMDAW10.1016/j.compbiomed.2014.04.001
    1. Cannestra A. F., et al. , “Refractory periods observed by intrinsic signal and fluorescent dye imaging,” J. Neurophysiol. 80(3), 1522–1532 (1998).JONEA4
    1. Pellicer A., del Carmen Bravo M., “Near-infrared spectroscopy: a methodology-focused review,” Semin. Fetal Neonat. Med. 16(1), 42–49 (2011).10.1016/j.siny.2010.05.003
    1. Ferrari M., Mottola L., Quaresima V., “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).10.1139/h04-031
    1. Orihuela-Espina F., et al. , “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol. 55(13), 3701–3724 (2010).PHMBA710.1088/0031-9155/55/13/009
    1. Benaron D. A., et al. , “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. Comput. 11(2), 109–117 (1995).10.1007/BF01617732
    1. Brigadoi S., Cooper R. J., “How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).10.1117/1.NPh.2.2.025005
    1. Strangman G. E., Zhang Q., Li Z., “Scalp and skull influence on near infrared photon propagation in the Colin27 brain template,” NeuroImage 85(Pt 1), 136–149 (2014).NEIMEF10.1016/j.neuroimage.2013.04.090
    1. Wang S., et al. , “Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities,” Opt. Rev. 17(4), 410–420 (2010).10.1007/s10043-010-0076-6
    1. Perdue K. L., Fang Q., Diamond S. G., “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).PHMBA710.1088/0031-9155/57/10/2857
    1. Funane T., et al. , “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” NeuroImage 85(Pt 1), 150–165 (2014).NEIMEF10.1016/j.neuroimage.2013.02.026
    1. Funane T., et al. , “Greater contribution of cerebral than extracerebral hemodynamics to near-infrared spectroscopy signals for functional activation and resting-state connectivity in infants,” Neurophotonics 1(2), 025003 (2014).10.1117/1.NPh.1.2.025003
    1. Patil A. V., et al. , “Experimental investigation of NIRS spatial sensitivity,” Biomed. Opt. Express 2(6), 1478–1493 (2011).BOEICL10.1364/BOE.2.001478
    1. Gunadi S., et al. , “Spatial sensitivity and penetration depth of three cerebral oxygenation monitors,” Biomed. Opt. Express 5(9), 2896–2912 (2014).BOEICL10.1364/BOE.5.002896
    1. Toronov V., et al. , “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).MPHYA610.1118/1.598943
    1. Kohri S., et al. , “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23(2), 301–312 (2002).PMEAE310.1088/0967-3334/23/2/306
    1. Carmody D. P., et al. , “A quantitative measure of myelination development in infants, using MR images,” Neuroradiology 46(9), 781–786 (2004).10.1007/s00234-004-1241-z
    1. Giorgio A., et al. , “Age-related changes in grey and white matter structure throughout adulthood,” NeuroImage 51(3), 943–951 (2010).NEIMEF10.1016/j.neuroimage.2010.03.004
    1. Wang X., et al. , “Probabilistic MRI brain anatomical atlases based on 1,000 Chinese subjects,” PLoS One 8(1), e50939 (2013).POLNCL10.1371/annotation/bae9fc08-fbfa-45b5-9d1d-0b8254d6efd5
    1. Leenders K. L., et al. , “Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age,” Brain: J. Neurol. 113(Pt 1), 27–47 (1990).10.1093/brain/113.1.27
    1. Duncan A., et al. , “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996).PEREBL10.1203/00006450-199605000-00025
    1. van der Zee P., et al. , “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” in Oxygen Transport to Tissue XIII, Goldstick T. K., McCabe M., Maguire D. J., Eds., Vol. 316, pp. 143–153, Springer, Boston, Massachusetts: (1992).
    1. Essenpreis M., et al. , “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).APOPAI10.1364/AO.32.000418
    1. Zhao H., et al. , “Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR,” Phys. Med. Biol. 47(12), 2075–2093 (2002).PHMBA710.1088/0031-9155/47/12/306
    1. Hoshi Y., “Functional near-infrared spectroscopy: potential and limitations in neuroimaging studies,” Int. Rev. Neurobiol 66(5), 237–266 (2005).10.1016/S0074-7742(05)66008-4
    1. Hoshi Y., “Functional near-infrared spectroscopy: current status and future prospects,” J. Biomed. Opt. 12(6), 062106 (2007).JBOPFO10.1117/1.2804911
    1. Maki A., et al. , “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).MPHYA610.1118/1.597496
    1. Tisdall M. M., et al. , “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).AACRAT10.1213/ane.0b013e3181aedcdc
    1. Wolf M., Ferrari M., Quaresima V., “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).JBOPFO10.1117/1.2804899
    1. Quaresima V., Ferrari M., “Muscle oxygenation by near-infrared-based tissue oximeters,” J. Appl. Physiol. 107(1), 371 (2009).10.1152/japplphysiol.00215.2009
    1. Ekkekakis P., “Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy,” J. Sport Exercise Psychol. 31(4), 505–553 (2009).10.1123/jsep.31.4.505
    1. Schroeter M. L., et al. , “Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy,” NeuroImage 19(3), 555–564 (2003).NEIMEF10.1016/S1053-8119(03)00155-1
    1. Brigadoi S., et al. , “Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data,” NeuroImage 85, 181–191 (2014).NEIMEF10.1016/j.neuroimage.2013.04.082
    1. Cooper R. J., et al. , “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).10.3389/fnins.2012.00147
    1. Zhang Y., et al. , “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).JBOPFO10.1117/1.1852552
    1. Santosa H., et al. , “Noise reduction in functional near-infrared spectroscopy signals by independent component analysis,” Rev. Sci. Instrum. 84(7), 073106 (2013).10.1063/1.4812785
    1. Robertson F. C., Douglas T. S., Meintjes E. M., “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. BioMed. Eng. 57(6), 1377–1387 (2010).10.1109/TBME.2009.2038667
    1. Tanaka H., Katura T., Sato H., “Task-related oxygenation and cerebral blood volume changes estimated from NIRS signals in motor and cognitive tasks,” NeuroImage 94, 107–119 (2014).NEIMEF10.1016/j.neuroimage.2014.02.036
    1. Tanaka H., Katura T., Sato H., “Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data,” NeuroImage 64, 308–327 (2013).NEIMEF10.1016/j.neuroimage.2012.08.044
    1. Yucel M. A., et al. , “Target principal component analysis: a new motion artefact correction approach for near-infrared spectroscopy,” J. Innovative Opt. Health Sci. 7(2), 1350066 (2014).10.1142/S1793545813500661
    1. Cui X., Bray S., Reiss A. L., “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” NeuroImage 49(4), 3039–3046 (2010).NEIMEF10.1016/j.neuroimage.2009.11.050
    1. Molavi B., Dumont G. A., “Wavelet-based motion artifact removal for functional near-infrared spectroscopy,” Physiol. Meas. 33(2), 259–270 (2012).PMEAE310.1088/0967-3334/33/2/259
    1. Jang K. E., et al. , “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).JBOPFO10.1117/1.3127204
    1. Chiarelli A. M., et al. , “A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data,” NeuroImage 112, 128–137 (2015).NEIMEF10.1016/j.neuroimage.2015.02.057
    1. Sato H., et al. , “Wavelet analysis for detecting body-movement artifacts in optical topography signals,” NeuroImage 33(2), 580–587 (2006).NEIMEF10.1016/j.neuroimage.2006.06.028
    1. Barker J. W., Aarabi A., Huppert T. J., “Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS,” Biomed. Opt. Express 4(8), 1366–1379 (2013).BOEICL10.1364/BOE.4.001366
    1. Izzetoglu M., et al. , “Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering,” BioMed. Eng. OnLine 9(1), 16 (2010).10.1186/1475-925X-9-16
    1. Izzetoglu M., et al. , “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).IEBEAX10.1109/TBME.2005.845243
    1. Nozawa T., Kondo T., “A comparison of artifact reduction methods for real-time analysis of fNIRS data,” in Human Interface and the Management of Information: Information and Interaction, Hutchison D., Ed., Vol. 5618, pp. 413–422, Springer, Berlin, Heidelberg: (2009).
    1. Scholkmann F., et al. , “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).PMEAE310.1088/0967-3334/31/5/004
    1. Scholkmann F., et al. , “End-tidal CO2: an important parameter for a correct interpretation in functional brain studies using speech tasks,” NeuroImage 66, 71–79 (2013).NEIMEF10.1016/j.neuroimage.2012.10.025
    1. Scholkmann F., Wolf M., Wolf U., “The effect of inner speech on arterial CO2 and cerebral hemodynamics and oxygenation: a functional NIRS study,” Adv. Exp. Med. Biol. 789, 81–87 (2013).AEMBAP10.1007/978-1-4614-7411-1
    1. Boas D. A., Dale A. M., Franceschini M. A., “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23(Suppl. 1), S275–S288 (2004).NEIMEF10.1016/j.neuroimage.2004.07.011
    1. Caldwell M., et al. , “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).NEIMEF10.1016/j.neuroimage.2016.08.058
    1. Gratton G., Corballis P. M., “Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal,” Psychophysiology 32(3), 292–299 (1995).PSPHAF10.1111/psyp.1995.32.issue-3
    1. Morren G., et al. , “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).MBECDY10.1007/BF02351016
    1. Holper L., Scholkmann F., Wolf M., “The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy,” Behav. Brain Res. 270, 95–107 (2014).BBREDI10.1016/j.bbr.2014.04.056
    1. Tak S., Ye J. C., “Statistical analysis of fNIRS data: a comprehensive review,” NeuroImage 85, 72–91 (2014).NEIMEF10.1016/j.neuroimage.2013.06.016
    1. Virtanen J., Noponen T., Meriläinen P., “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).JBOPFO10.1117/1.3253323
    1. Zhang X., Noah J. A., Hirsch J., “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).10.1117/1.NPh.3.1.015004
    1. Bauernfeind G., et al. , “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).10.1088/1741-2560/11/5/056010
    1. Haeussinger F. B., et al. , “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method,” NeuroImage 95, 69–79 (2014).NEIMEF10.1016/j.neuroimage.2014.02.035
    1. Harrivel A. R., et al. , “Dynamic filtering improves attentional state prediction with fNIRS,” Biomed. Opt. Express 7(3), 979–1002 (2016).BOEICL10.1364/BOE.7.000979
    1. Saager R. B., Berger A. J., “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A 22(9), 1874–1882 (2005).JOAOD610.1364/JOSAA.22.001874
    1. Kirilina E., et al. , “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).NEIMEF10.1016/j.neuroimage.2012.02.074
    1. Scholkmann F., Metz A. J., Wolf M., “Measuring tissue hemodynamics and oxygenation by continuous-wave functional near-infrared spectroscopy—how robust are the different calculation methods against movement artifacts?” Physiol. Meas. 35(4), 717–734 (2014).PMEAE310.1088/0967-3334/35/4/717
    1. Saager R., Berger A., “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).JBOPFO10.1117/1.2940587
    1. Gagnon L., et al. , “Short separation channel location impacts the performance of short channel regression in NIRS,” NeuroImage 59(3), 2518–2528 (2012).NEIMEF10.1016/j.neuroimage.2011.08.095
    1. Gagnon L., et al. , “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” NeuroImage 56(3), 1362–1371 (2011).NEIMEF10.1016/j.neuroimage.2011.03.001
    1. Gagnon L., et al. , “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” NeuroImage 85(Pt 1), 127–135 (2014).NEIMEF10.1016/j.neuroimage.2013.01.073
    1. Goodwin J. R., Gaudet C. R., Berger A. J., “Short-channel functional near-infrared spectroscopy regressions improve when source–detector separation is reduced,” Neurophotonics 1(1), 015002 (2014).10.1117/1.NPh.1.1.015002
    1. Sato T., et al. , “Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes,” NeuroImage 141, 120–132 (2016).NEIMEF10.1016/j.neuroimage.2016.06.054
    1. Zhang Y., et al. , “Multiregional functional near-infrared spectroscopy reveals globally symmetrical and frequency-specific patterns of superficial interference,” Biomed. Opt. Express 6(8), 2786–2802 (2015).BOEICL10.1364/BOE.6.002786
    1. Saager R. B., Telleri N. L., Berger A. J., “Two-detector corrected near infrared spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” NeuroImage 55(4), 1679–1685 (2011).NEIMEF10.1016/j.neuroimage.2011.01.043
    1. Miyazawa T., et al. , “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113(11), 2841–2848 (2013).EJAPFN10.1007/s00421-013-2723-7
    1. Takahashi T., et al. , “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” NeuroImage 57(3), 991–1002 (2011).NEIMEF10.1016/j.neuroimage.2011.05.012
    1. Gagnon L., et al. , “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” NeuroImage 59(4), 3933–3940 (2012).NEIMEF10.1016/j.neuroimage.2011.10.054
    1. Al-Rawi P. G., Smielewski P., Kirkpatrick P. J., “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).SJCCA710.1161/hs1101.098356
    1. Canova D., et al. , “Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests,” J. Appl. Physiol. 110(6), 1646–1655 (2011).10.1152/japplphysiol.00003.2011
    1. Vrana A., et al. , “Different mechanosensory stimulations of the lower back elicit specific changes in hemodynamics and oxygenation in cortical sensorimotor areas: a fNIRS study,” Brain Behav. 6(12), e00575 (2016).10.1002/brb3.2016.6.issue-12
    1. Ye J. C., et al. , “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” NeuroImage 44(2), 428–447 (2009).NEIMEF10.1016/j.neuroimage.2008.08.036
    1. Plichta M. M., et al. , “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” NeuroImage 35(2), 625–634 (2007).NEIMEF10.1016/j.neuroimage.2006.11.028
    1. Wilson T. W., Kurz M. J., Arpin D. J., “Functional specialization within the supplementary motor area: a fNIRS study of bimanual coordination,” NeuroImage 85, 445–450 (2014).NEIMEF10.1016/j.neuroimage.2013.04.112
    1. Singh A. K., et al. , “Scope of resampling-based tests in fNIRS neuroimaging data analysis,” Stat. Sin. 18, 1519–1534 (2008).STSNEO
    1. Fagerland M. W., “t-tests, non-parametric tests, and large studies—a paradox of statistical practice?” BMC Med. Res. Method. 12, 78 (2012).10.1186/1471-2288-12-78
    1. Burke S., “Missing values, outliers, robust statistics and non-parametric methods,” LC-GC Eur. Online Suppl. Stat. Data Anal. 2, 19–24 (2001).
    1. Potvin C., Roff D. A., “Distribution-free and robust statistical methods: viable alternatives to parametric statistics,” Ecology 74(6), 1617–1628 (1993).ECGYAQ10.2307/1939920
    1. Erceg-Hurn D. M., Mirosevich V. M., “Modern robust statistical methods: an easy way to maximize the accuracy and power of your research,” Am. Psychol. 63(7), 591–601 (2008).10.1037/0003-066X.63.7.591
    1. Boisgontier M. P., Cheval B., “The ANOVA to mixed model transition,” Neurosci. Biobehav. Rev. 68, 1004–1005 (2016).10.1016/j.neubiorev.2016.05.034
    1. Aarts E., et al. , “A solution to dependency: using multilevel analysis to accommodate nested data,” Nat. Neurosci. 17(4), 491–496 (2014).NANEFN10.1038/nn.3648
    1. Judd C. M., Westfall J., Kenny D. A., “Treating stimuli as a random factor in social psychology: a new and comprehensive solution to a pervasive but largely ignored problem,” J. Pers. Social Psychol. 103(1), 54–69 (2012).JPSPB210.1037/a0028347
    1. Bolker B. M., et al. , “Generalized linear mixed models: a practical guide for ecology and evolution,” Trends Ecol. Evol. 24(3), 127–135 (2009).10.1016/j.tree.2008.10.008
    1. Kamran M. A., Mannan M. M. N., Jeong M. Y., “Cortical signal analysis and advances in functional near-infrared spectroscopy signal: a review,” Front. Hum. Neurosci. 10, 261 (2016).10.3389/fnhum.2016.00261
    1. Hoshi Y., “Functional near-infrared optical imaging: utility and limitations in human brain mapping,” Psychophysiology 40(4), 511–520 (2003).PSPHAF10.1111/psyp.2003.40.issue-4
    1. Hoshi Y., Kobayashi N., Tamura M., “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90(5), 1657–1662 (2001).
    1. Lindauer U., et al. , “Pathophysiological interference with neurovascular coupling— when imaging based on hemoglobin might go blind,” Front. Neuroenerg. 2, 25 (2010).10.3389/fnene.2010.00025
    1. Kleinschmidt A., et al. , “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 16(5), 817–826 (1996).10.1097/00004647-199609000-00006
    1. Toronov V., et al. , “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28(4), 521–527 (2001).MPHYA610.1118/1.1354627
    1. La Fougère C., et al. , “Real versus imagined locomotion: a [F18]-FDG PET-fMRI comparison,” NeuroImage 50(4), 1589–1598 (2010).NEIMEF10.1016/j.neuroimage.2009.12.060
    1. Zwergal A., et al. , “Aging of human supraspinal locomotor and postural control in fMRI,” Neurobiol. Aging 33(6), 1073–1084 (2012).NEAGDO10.1016/j.neurobiolaging.2010.09.022
    1. Zwergal A., et al. , “Functional disturbance of the locomotor network in progressive supranuclear palsy,” Neurology 80(7), 634–641 (2013).NEURAI10.1212/WNL.0b013e318281cc43
    1. Nutt J. G., Horak F. B., Bloem B. R., “Milestones in gait, balance, and falling,” Mov. Disord. 26(6), 1166–1174 (2011).10.1002/mds.23588
    1. Maillet A., Pollak P., Debu B., “Imaging gait disorders in parkinsonism: a review,” J. Neurol. Neurosurg. Psychiatry 83(10), 986–993 (2012).10.1136/jnnp-2012-302461
    1. Clark D. J., “Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies,” Front. Hum. Neurosci. 9, 246 (2015).10.3389/fnhum.2015.00246
    1. Young P. M. M., Dingwell J. B., “Voluntary changes in step width and step length during human walking affect dynamic margins of stability,” Gait Posture 36(2), 219–224 (2012).10.1016/j.gaitpost.2012.02.020
    1. Nordin E., et al. , “Changes in step-width during dual-task walking predicts falls,” Gait Posture 32(1), 92–97 (2010).10.1016/j.gaitpost.2010.03.012
    1. Rizzolatti G., Fogassi L., Gallese V., “Motor and cognitive functions of the ventral premotor cortex,” Curr. Opin. Neurobiol. 12(2), 149–154 (2002).COPUEN10.1016/S0959-4388(02)00308-2
    1. Schubotz R. I., von Cramon D., “Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies,” NeuroImage 20, S120–S131 (2003).NEIMEF10.1016/j.neuroimage.2003.09.014
    1. van den Heuvel O. A., et al. , “Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of tower of London task,” NeuroImage 18(2), 367–374 (2003).NEIMEF10.1016/S1053-8119(02)00010-1
    1. Cona G., Semenza C., “Supplementary motor area as key structure for domain-general sequence processing: a unified account,” Neurosci. Biobehav. Rev. 72, 28–42 (2017).NBREDE10.1016/j.neubiorev.2016.10.033
    1. Tregellas J. R., Davalos D. B., Rojas D. C., “Effect of task difficulty on the functional anatomy of temporal processing,” NeuroImage 32(1), 307–315 (2006).NEIMEF10.1016/j.neuroimage.2006.02.036
    1. Nachev P., Kennard C., Husain M., “Functional role of the supplementary and pre-supplementary motor areas,” Nat. Rev. Neurosci. 9(11), 856–869 (2008).10.1038/nrn2478
    1. Dietrich A., “Transient hypofrontality as a mechanism for the psychological effects of exercise,” Psychiatry Res. 145(1), 79–83 (2006).PSRSDR10.1016/j.psychres.2005.07.033
    1. Kelly V. E., Eusterbrock A. J., Shumway-Cook A., “Factors influencing dynamic prioritization during dual-task walking in healthy young adults,” Gait Posture 37(1), 131–134 (2013).10.1016/j.gaitpost.2012.05.031
    1. Yogev-Seligmann G., Hausdorff J. M., Giladi N., “Do we always prioritize balance when walking? Towards an integrated model of task prioritization,” Mov. Disord. 27(6), 765–770 (2012).MOVDEA10.1002/mds.v27.6
    1. Carius D., et al. , “Hemodynamic response alteration as a function of task complexity and expertise—an fNIRS study in jugglers,” Front. Hum. Neurosci. 10, 126 (2016).10.3389/fnhum.2016.00126
    1. Wittenberg E., et al. , “Neuroimaging of human balance control: a systematic review,” Front. Hum. Neurosci. 11, 170 (2017).10.3389/fnhum.2017.00170
    1. Brandt T., et al. , “Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parieto-insular vestibular cortex,” Brain: J. Neurol. 121(Pt 9), 1749–1758 (1998).10.1093/brain/121.9.1749
    1. Jahn K., et al. , “Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging,” NeuroImage 22(4), 1722–1731 (2004).NEIMEF10.1016/j.neuroimage.2004.05.017
    1. Bense S., et al. , “Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI),” J. Neurophysiol. 85(2), 886–899 (2001).JONEA4
    1. Karnath H. O., “New insights into the functions of the superior temporal cortex,” Nat. Rev. Neurosci. 2(8), 568–576 (2001).NRNAAN10.1038/35086057
    1. Faraldo-García A., et al. , “Influence of gender on the sensory organisation test and the limits of stability in healthy subjects,” Acta Otorrinolaringol. 62(5), 333–338 (2011).10.1016/j.otoeng.2011.03.006
    1. Dietrich A., “Imaging the imagination: the trouble with motor imagery,” Methods 45(4), 319–324 (2008).10.1016/j.ymeth.2008.04.004
    1. Nasar J. L., Troyer D., “Pedestrian injuries due to mobile phone use in public places,” Accid. Anal. Prev. 57, 91–95 (2013).10.1016/j.aap.2013.03.021
    1. Stavrinos D., Byington K. W., Schwebel D. C., “Distracted walking: cell phones increase injury risk for college pedestrians,” J. Saf. Res. 42(2), 101–107 (2011).JSFRAV10.1016/j.jsr.2011.01.004
    1. Hamacher D., et al. , “The reliability of local dynamic stability in walking while texting and performing an arithmetical problem,” Gait Posture 44, 200–203 (2016).10.1016/j.gaitpost.2015.12.021
    1. Cabeza R., “Hemispheric asymmetry reduction in older adults: the HAROLD model,” Psychol. Aging 17(1), 85–100 (2002).PAGIEL10.1037/0882-7974.17.1.85
    1. Heuninckx S., Wenderoth N., Swinnen S. P., “Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons,” J. Neurosci. 28(1), 91–99 (2008).JNRSDS10.1523/JNEUROSCI.3300-07.2008
    1. Bolton D. A. E., “The role of the cerebral cortex in postural responses to externally induced perturbations,” Neurosci. Biobehav. Rev. 57, 142–155 (2015).NBREDE10.1016/j.neubiorev.2015.08.014
    1. Clark V. M., Burden A. M., “A 4-week wobble board exercise programme improved muscle onset latency and perceived stability in individuals with a functionally unstable ankle,” Phys. Ther. Sport 6(4), 181–187 (2005).10.1016/j.ptsp.2005.08.003
    1. Wester J. U., et al. , “Wobble board training after partial sprains of the lateral ligaments of the ankle: a prospective randomized study,” J. Orthop. Sports Phys. Ther. 23(5), 332–336 (1996).JOSPDV10.2519/jospt.1996.23.5.332
    1. Onigbinde A. T., Awotidebe T., Awosika H., “Effect of 6 weeks wobble board exercises on static and dynamic balance of stroke survivors,” Technol. Health Care 17(5–6), 387–392 (2009).10.3233/THC-2009-0559
    1. Hamacher D., Hamacher D., Schega L., “Towards the importance of minimum toe clearance in level ground walking in a healthy elderly population,” Gait Posture 40(4), 727–729 (2014).10.1016/j.gaitpost.2014.07.016
    1. Morris R., et al. , “Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease,” Neurosci. Biobehav. Rev. 64, 326–345 (2016).10.1016/j.neubiorev.2016.02.012

Source: PubMed

3
S'abonner