The effect of vitamin B12 supplementation in Nepalese infants on growth and development: study protocol for a randomized controlled trial

Tor A Strand, Manjeswori Ulak, Ram K Chandyo, Ingrid Kvestad, Mari Hysing, Merina Shrestha, Sudha Basnet, Suman Ranjitkar, Laxman Shrestha, Prakash S Shrestha, Tor A Strand, Manjeswori Ulak, Ram K Chandyo, Ingrid Kvestad, Mari Hysing, Merina Shrestha, Sudha Basnet, Suman Ranjitkar, Laxman Shrestha, Prakash S Shrestha

Abstract

Background: Vitamin B12 deficiency is one of the most common micronutrient deficiencies and is associated with poor cognitive development and growth. Vitamin B12 is crucial for normal cell division and differentiation, and it is necessary for the development and myelination of the central nervous system. The aim of the present study is to measure the effect of daily supplementation of vitamin B12 on the neurodevelopment and growth of young children in Nepal.

Methods/design: We are conducting an individually randomized, double-blind, placebo-controlled trial with 600 marginally stunted children 6-11 months old (length for age less than -1 z-score). Children are randomized to receive a lipid-based paste containing vitamin B12 or placebo daily for 12 months. The main outcomes are changes in growth (z-scores) and in neurodevelopment measured by the Bayley Scales of Infant and Toddler Development, Third Edition, from baseline until the end of the study.

Discussion: If vitamin B12 supplementation benefits early child development and growth, this will have consequences for dietary recommendations for malnourished children worldwide.

Trial registrations: ClinicalTrials.gov Identifier: NCT02272842 . Registered on 21 October 2014. Universal Trial Number: U1111-1161-5187. Registered on 8 September 2014.

Keywords: Cobalamin; Cognitive Development; Growth; Infants; Nepal; Nutrition; Supplementation.

Figures

Fig. 1
Fig. 1
Flow of participants in a double-blind, randomized, placebo-controlled trial on the effect of daily supplementation of vitamin B12 on cognitive development, growth, and hemoglobin concentration. ADBB Alarm Distress Baby Scale, ASQ-3 Ages & Stages Questionnaire, Third Edition, Bayley Bayley Scales of Infant and Toddler Development, Third Edition
Fig. 2
Fig. 2
Required sample sizes by minimum meaningful effect sizes when comparing group means and assuming equal variances at 80% and 90% power

References

    1. Black MM. Micronutrient deficiencies and cognitive functioning. J Nutr. 2003;133(11 Suppl 2):3927S–31.
    1. Allen LH. Folate and vitamin B12 status in the Americas. Nutr Rev. 2004;62(6 Pt 2):S29–34. doi: 10.1111/j.1753-4887.2004.tb00069.x.
    1. Taneja S, Bhandari N, Strand TA, Sommerfelt H, Refsum H, Ueland PM, et al. Cobalamin and folate status in infants and young children in a low-to-middle income community in India. Am J Clin Nutr. 2007;86(5):1302–9.
    1. Strand TA, Taneja S, Kumar T, Manger MS, Refsum H, Yajnik CS, et al. Vitamin B-12, folic acid, and growth in 6- to 30-month-old children: a randomized controlled trial. Pediatrics. 2015;135(4):e918–26. doi: 10.1542/peds.2014-1848.
    1. Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health. 2014;34(4):250–65. doi: 10.1179/2046905514Y.0000000158.
    1. Ulak M, Chandyo RK, Thorne-Lyman AL, Henjum S, Ueland PM, Midttun Ø, et al. Vitamin status among breastfed infants in Bhaktapur, Nepal. Nutrients. 2016;8(3):149. doi: 10.3390/nu8030149.
    1. Ulak M, Chandyo RK, Adhikari RK, Sharma PR, Sommerfelt H, Refsum H, et al. Cobalamin and folate status in 6 to 35 months old children presenting with acute diarrhea in Bhaktapur, Nepal. PLoS One. 2014;9(3):e90079. doi: 10.1371/journal.pone.0090079.
    1. Dror DK, Allen LH. Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev. 2008;66(5):250–5. doi: 10.1111/j.1753-4887.2008.00031.x.
    1. Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull. 2008;29(2 Suppl):S126–31. doi: 10.1177/15648265080292S117.
    1. Strand TA, Taneja S, Ueland PM, Refsum H, Bahl R, Schneede J, et al. Cobalamin and folate status predicts mental development scores in North Indian children 12–18 mo of age. Am J Clin Nutr. 2013;97(2):310–7. doi: 10.3945/ajcn.111.032268.
    1. Moore E, Mander A, Ames D, Carne R, Sanders K, Watters D. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr. 2012;24(4):541–56. doi: 10.1017/S1041610211002511.
    1. van de Rest O, van Hooijdonk LW, Doets E, Schiepers OJ, Eilander A, de Groot LC. B vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann Nutr Metab. 2012;60(4):272–92. doi: 10.1159/000337945.
    1. Louwman MW, van Dusseldorp M, van de Vijver FJ, Thomas CM, Schneede J, Ueland PM, et al. Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr. 2000;72(3):762–9.
    1. Torsvik I, Ueland PM, Markestad T, Bjorke-Monsen AL. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am J Clin Nutr. 2013;98(5):1233–40. doi: 10.3945/ajcn.113.061549.
    1. Torsvik IK, Ueland PM, Markestad T, Midttun Ø, Bjørke Monsen AL. Motor development related to duration of exclusive breastfeeding, B vitamin status and B12 supplementation in infants with a birth weight between 2000–3000 g, results from a randomized intervention trial. BMC Pediatr. 2015;15:218. doi: 10.1186/s12887-015-0533-2.
    1. Kvestad I, Taneja S, Kumar T, Hysing M, Refsum H, Yajnik CS, et al. Vitamin B12 and folic acid improve gross motor and problem-solving skills in young North Indian children: a randomized placebo-controlled trial. PLoS One. 2015;10(6):e0129915. doi: 10.1371/journal.pone.0129915.
    1. Thompson RA, Nelson CA. Developmental science and the media: early brain development. Am Psychol. 2001;56(1):5–15. doi: 10.1037/0003-066X.56.1.5.
    1. Walker SP, Wachs TD, Grantham-McGregor S, Black MM, Nelson CA, Huffman SL, et al. Inequality in early childhood: risk and protective factors for early child development. Lancet. 2011;378(9799):1325–38. doi: 10.1016/S0140-6736(11)60555-2.
    1. Cusick SE, Georgieff MK. Nutrient supplementation and neurodevelopment: timing is the key. Arch Pediatr Adolesc Med. 2012;166(5):481–2. doi: 10.1001/archpediatrics.2012.199.
    1. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47. doi: 10.1093/nar/30.10.e47.
    1. Lapham K, Kvale MN, Lin J, Connell S, Croen LA, Dispensa BP, et al. Automated assay of telomere length measurement and informatics for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics. 2015;200(4):1061–72. doi: 10.1534/genetics.115.178624.
    1. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31. doi: 10.1093/epirev/mxs008.
    1. Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A, et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry. 2013;18(5):576–81. doi: 10.1038/mp.2012.32.
    1. Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JYY, et al. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol Psychiatry. 2012;17(7):719–27. doi: 10.1038/mp.2011.53.
    1. Kananen L, Surakka I, Pirkola S, Suvisaari J, Lönnqvist J, Peltonen L, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One. 2010;5(5):e10826. doi: 10.1371/journal.pone.0010826.
    1. Drury SS, Mabile E, Brett ZH, Esteves K, Jones E, Shirtcliff EA, et al. The association of telomere length with family violence and disruption. Pediatrics. 2014;134(1):e128–37. doi: 10.1542/peds.2013-3415.
    1. Pawlas N, Plachetka A, Kozlowska A, Broberg K, Kasperczyk S. Telomere length in children environmentally exposed to low-to-moderate levels of lead. Toxicol Appl Pharmacol. 2015;287(2):111–8. doi: 10.1016/j.taap.2015.05.005.
    1. Milne E, O’Callaghan N, Ramankutty P, de Klerk NH, Greenop KR, Armstrong BK, et al. Plasma micronutrient levels and telomere length in children. Nutrition. 2015;31(2):331–6. doi: 10.1016/j.nut.2014.08.005.
    1. Liu JJ, Prescott J, Giovannucci E, Hankinson SE, Rosner B, De Vivo I. One-carbon metabolism factors and leukocyte telomere length. Am J Clin Nutr. 2013;97(4):794–9. doi: 10.3945/ajcn.112.051557.
    1. Christian P. Micronutrients, birth weight, and survival. Annu Rev Nutr. 2010;30:83–104. doi: 10.1146/annurev.nutr.012809.104813.
    1. World Health Organization (WHO) Integrated Management of Childhood Illness. Geneva: WHO; 2003.
    1. Weiss LG, Oakland T, Aylward GP, editors. Bayley-III clinical use and interpretation. San Diego: Academic Press; 2010.
    1. Sucharita S, Dwarkanath P, Thomas T, Srinivasan K, Kurpad AV, Vaz M. Low maternal vitamin B12 status during pregnancy is associated with reduced heart rate variability indices in young children. Matern Child Nutr. 2014;10(2):226–33. doi: 10.1111/j.1740-8709.2012.00418.x.
    1. Ertem IO, Atay G, Dogan DG, Bayhan A, Bingoler BE, Gok CG, et al. Mothers’ knowledge of young child development in a developing country. Child Care Health Dev. 2007;33(6):728–37. doi: 10.1111/j.1365-2214.2007.00751.x.
    1. Sadeh A. A brief screening questionnaire for infant sleep problems: validation and findings for an Internet sample. Pediatrics. 2004;113(6):e570–7. doi: 10.1542/peds.113.6.e570.
    1. O’Broin S, Kelleher B. Microbiological assay on microtitre plates of folate in serum and red cells. J Clin Pathol. 1992;45(4):344–7. doi: 10.1136/jcp.45.4.344.
    1. Kelleher BP, Walshe KG, Scott JM, O’Broin SD. Microbiological assay for vitamin B12 with use of a colistin-sulfate-resistant organism. Clin Chem. 1987;33(1):52–4.
    1. McGrath M, Wong JY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomark Prev. 2007;16(4):815–9. doi: 10.1158/1055-9965.EPI-06-0961.
    1. Wang X, Kam Z, Carlton PM, Xu L, Sedat JW, Blackburn EH. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy. Epigenetics Chromatin. 2008;1(1):4. doi: 10.1186/1756-8935-1-4.
    1. Taneja S, Strand TA, Kumar T, Mahesh M, Mohan S, Manger MS, et al. Folic acid and vitamin B-12 supplementation and common infections in 6–30-mo-old children in India: a randomized placebo-controlled trial. Am J Clin Nutr. 2013;98(3):731–7. doi: 10.3945/ajcn.113.059592.

Source: PubMed

3
S'abonner