Genomic strategies to understand causes of keratoconus

Justyna A Karolak, Marzena Gajecka, Justyna A Karolak, Marzena Gajecka

Abstract

Keratoconus (KTCN) is a degenerative disorder of the eye characterized by the conical shape and thinning of the cornea. The abnormal structure of KTCN-affected cornea results in loss of visual acuity. While many studies examine how environmental factors influence disease development, finding the genetic triggers has been a major emphasis of KTCN research. This paper focuses on genomic strategies that were implemented for finding candidate genes, including linkage and association studies, and presents different approaches of mutation screening. The advantages and limitations of particular tools are discussed based on literature and personal experience. Since etiology underlying KTCN is complex, numerous findings indicating heterogeneity of genetic factors involved KTCN etiology are presented.

Keywords: Candidate gene; Complex disease; High-throughput methods; Keratoconus; Next-generation sequencing.

Conflict of interest statement

Conflict of interest

Justyna A. Karolak and Marzena Gajecka declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Figures

Fig. 1
Fig. 1
Schematic representation of the human eye. a Representation of healthy human eye with normal corneal thickness. b Structure of the human cornea. The cornea is a complex tissue comprised of five main layers (from the anterior to posterior margin): corneal epithelium, Bowman’s membrane, stroma, Descemet’s membrane, and endothelium. c Human eye with keratoconus with characteristic thinning and cone-like bulging of the cornea
Fig. 2
Fig. 2
Integrating biological data from multiple approaches to understand keratoconus. To understand biological processes underlying keratoconus, integrated analysis of various biological aspects may be required. The figure summarizes information on numerous areas, including DNA sequence (genome), epigenetic modifications (epigenome), RNA transcripts (transcriptome), proteins (proteome), metabolites (metabolome), and microorganisms (microbiome). Each element in the array contains examples of techniques and technologies that can be used to study particular biological aspects. List of abbreviations: genome-wide association study (GWAS), next-generation sequencing (NGS), whole-genome sequencing (WGS), whole-exome sequencing (WES), reverse-transcription-PCR (RT-PCR), chromatin immunoprecipitation-sequencing (ChIP-Seq), RNA sequencing (RNA-seq), whole-genome bisulfite sequencing (WGB-seq), 2-D gel electrophoresis (2-DE), enzyme-linked immunosorbent assay (ELISA), nuclear magnetic resonance (NMR), mass spectrometry (MS), gas chromatography (GC), liquid chromatography–mass spectrometry (LC–MS)

References

    1. Abu A, Frydman M, Marek D, et al. Deleterious mutations in the Zinc-Finger 469 gene cause brittle cornea syndrome. Am J Hum Genet. 2008;82:1217–1222. doi: 10.1016/j.ajhg.2008.04.001.
    1. Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis. 2011;17:667–672.
    1. Abu-Amero KK, Azad TA, Kalantan H, et al. Mitochondrial sequence changes in keratoconus patients. Invest Ophthalmol Vis Sci. 2014;55:1706–1710. doi: 10.1167/iovs.14-13938.
    1. Abu-Amero KK, Helwa I, Al-Muammar A, et al. Case-control association between CCT-associated variants and keratoconus in a Saudi Arabian population. J Negat Results Biomed. 2015;14:10. doi: 10.1186/s12952-015-0029-5.
    1. Abu-Amero KK, Helwa I, Al-Muammar A, et al. Screening of the seed region of MIR184 in keratoconus patients from Saudi Arabia. BioMed Res Int. 2015;2015:604508. doi: 10.1155/2015/604508.
    1. Aldave AJ, Yellore VS, Salem AK, et al. No VSX1 gene mutations associated with keratoconus. Invest Ophthalmol Vis Sci. 2006;47:2820–2822. doi: 10.1167/iovs.05-1530.
    1. Aldave AJ, Bourla N, Yellore VS, et al. Keratoconus is not associated with mutations in COL8A1 and COL8A2. Cornea. 2007;26:963–965. doi: 10.1097/ICO.0b013e31811dfaf7.
    1. Al-Muammar AM, Kalantan H, Azad TA, et al. Analysis of the SOD1 gene in keratoconus patients from Saudi Arabia. Ophthalmic Genet. 2015;36:373–375. doi: 10.3109/13816810.2014.889173.
    1. Arnal E, Peris-Martínez C, Menezo JL, et al. Oxidative stress in keratoconus? Invest Ophthalmol Vis Sci. 2011;52:8592–8597. doi: 10.1167/iovs.11-7732.
    1. Bae HA, Mills RAD, Lindsay RG, et al. Replication and meta-analysis of candidate loci identified variation at RAB3GAP1 associated with keratoconus. Invest Ophthalmol Vis Sci. 2013;54:5132–5135. doi: 10.1167/iovs.13-12377.
    1. Barbaro V, Di Iorio E, Ferrari S, et al. Expression of VSX1 in human corneal keratocytes during differentiation into myofibroblasts in response to wound healing. Invest Ophthalmol Vis Sci. 2006;47:5243–5250. doi: 10.1167/iovs.06-0185.
    1. Bawazeer AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol. 2000;84:834–836. doi: 10.1136/bjo.84.8.834.
    1. Bisceglia L, Ciaschetti M, De Bonis P, et al. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci. 2005;46:39–45. doi: 10.1167/iovs.04-0533.
    1. Bisceglia L, De Bonis P, Pizzicoli C, et al. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci. 2009;50:1081–1086. doi: 10.1167/iovs.08-2382.
    1. Brancati F, Valente EM, Sarkozy A, et al. A locus for autosomal dominant keratoconus maps to human chromosome 3p14-q13. J Med Genet. 2004;41:188–192. doi: 10.1136/jmg.2003.012872.
    1. Buddi R, Lin B, Atilano SR, et al. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem Off J Histochem Soc. 2002;50:341–351. doi: 10.1177/002215540205000306.
    1. Burdon KP, Vincent AL. Insights into keratoconus from a genetic perspective. Clin Exp Optom. 2013;96:146–154. doi: 10.1111/cxo.12024.
    1. Burdon KP, Coster DJ, Charlesworth JC, et al. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum Genet. 2008;124:379–386. doi: 10.1007/s00439-008-0555-z.
    1. Burdon KP, Macgregor S, Bykhovskaya Y, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Invest Ophthalmol Vis Sci. 2011;52:8514–8519. doi: 10.1167/iovs.11-8261.
    1. Bykhovskaya Y, Li X, Epifantseva I, et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Invest Ophthalmol Vis Sci. 2012;53:4152–4157. doi: 10.1167/iovs.11-9268.
    1. Bykhovskaya Y, Caiado Canedo AL, Wright KW, Rabinowitz YS. C.57 C>T mutation in MIR 184 is responsible for congenital cataracts and corneal abnormalities in a five-generation family from Galicia, Spain. Ophthalmic Genet. 2015;36:244–247. doi: 10.3109/13816810.2013.848908.
    1. Bykhovskaya Y, Li X, Taylor KD, et al. Linkage analysis of high-density SNPs confirms keratoconus locus at 5q chromosomal region. Ophthalmic Genet. 2016;37:109–110.
    1. Chow RL, Volgyi B, Szilard RK, et al. Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Proc Natl Acad Sci USA. 2004;101:1754–1759. doi: 10.1073/pnas.0306520101.
    1. Czugala M, Karolak JA, Nowak DM, et al. Novel mutation and three other sequence variants segregating with phenotype at keratoconus 13q32 susceptibility locus. Eur J Hum Genet EJHG. 2012;20:389–397. doi: 10.1038/ejhg.2011.203.
    1. Dash DP, Silvestri G, Hughes AE. Fine mapping of the keratoconus with cataract locus on chromosome 15q and candidate gene analysis. Mol Vis. 2006;12:499–505.
    1. Dash DP, George S, O’Prey D, et al. Mutational screening of VSX1 in keratoconus patients from the European population. Eye Lond Engl. 2010;24:1085–1092. doi: 10.1097/QAD.0b013e328336e978.
    1. Davidson AE, Borasio E, Liskova P, et al. Brittle cornea syndrome ZNF469 mutation carrier phenotype and segregation analysis of rare ZNF469 variants in familial keratoconus. Invest Ophthalmol Vis Sci. 2015;56:578–586. doi: 10.1167/iovs.14-15792.
    1. De Bonis P, Laborante A, Pizzicoli C, et al. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus. Mol Vis. 2011;17:2482–2494.
    1. Dehkordi FA, Rashki A, Bagheri N, et al. Study of VSX1 mutations in patients with keratoconus in southwest Iran using PCR-single-strand conformation polymorphism/heteroduplex analysis and sequencing method. Acta Cytol. 2013;57:646–651. doi: 10.1159/000353297.
    1. Dickson SP, Wang K, Krantz I, et al. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8:e1000294. doi: 10.1371/journal.pbio.1000294.
    1. Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus. 1994;31:38–40.
    1. Eran P, Almogit A, David Z, et al. The D144E substitution in the VSX1 gene: a non-pathogenic variant or a disease causing mutation? Ophthalmic Genet. 2008;29:53–59. doi: 10.1080/13816810802008242.
    1. Fabre EJ, Bureau J, Pouliquen Y, Lorans G. Binding sites for human interleukin 1 alpha, gamma interferon and tumor necrosis factor on cultured fibroblasts of normal cornea and keratoconus. Curr Eye Res. 1991;10:585–592. doi: 10.3109/02713689109013850.
    1. Faria-Correia F, Luz A, Ambrósio R., Jr Managing corneal ectasia prior to keratoplasty. Expert Rev Ophthalmol. 2015;10:33–48. doi: 10.1586/17469899.2015.991390.
    1. Farzadfard A, Nassiri N, Moghadam TN, et al. Screening for MIR184 mutations in Iranian patients with keratoconus. J Ophthalmic Vis Res. 2016;11:3–7. doi: 10.4103/2008-322X.180715.
    1. Fullerton J, Paprocki P, Foote S, et al. Identity-by-descent approach to gene localisation in eight individuals affected by keratoconus from north–west Tasmania, Australia. Hum Genet. 2002;110:462–470. doi: 10.1007/s00439-002-0705-7.
    1. Gajecka M. Unrevealed mosaicism in the next-generation sequencing era. Mol Genet Genomics MGG. 2016;291:513–530. doi: 10.1007/s00438-015-1130-7.
    1. Gajecka M, Radhakrishna U, Winters D, et al. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci. 2009;50:1531–1539. doi: 10.1167/iovs.08-2173.
    1. Galvis V, Sherwin T, Tello A, et al. Keratoconus: an inflammatory disorder? Eye Lond Engl. 2015;29:843–859.
    1. Gao X, Gauderman WJ, Liu Y, et al. A genome-wide association study of central corneal thickness in Latinos. Invest Ophthalmol Vis Sci. 2013;54:2435–2443. doi: 10.1167/iovs.13-11692.
    1. Gokhale NS. Epidemiology of keratoconus. Indian J Ophthalmol. 2013;61:382–383. doi: 10.4103/0301-4738.116054.
    1. Gondhowiardjo TD, van Haeringen NJ. Corneal aldehyde dehydrogenase, glutathione reductase, and glutathione S-transferase in pathologic corneas. Cornea. 1993;12:310–314. doi: 10.1097/00003226-199307000-00006.
    1. Guan T, Liu C, Ma Z, Ding S. The point mutation and polymorphism in keratoconus candidate gene TGFBI in Chinese population. Gene. 2012;503:137–139. doi: 10.1016/j.gene.2012.04.061.
    1. Hameed A, Khaliq S, Ismail M, et al. A novel locus for Leber congenital amaurosis (LCA4) with anterior keratoconus mapping to chromosome 17p13. Invest Ophthalmol Vis Sci. 2000;41:629–633.
    1. Han W, Yap MKH, Wang J, Yip SP. Family-based association analysis of hepatocyte growth factor (HGF) gene polymorphisms in high myopia. Invest Ophthalmol Vis Sci. 2006;47:2291–2299. doi: 10.1167/iovs.05-1344.
    1. Hao X-D, Chen P, Chen Z-L, et al. Evaluating the Association between Keratoconus and Reported Genetic Loci in a Han Chinese Population. Ophthalmic Genet. 2015;36:132–136. doi: 10.3109/13816810.2015.1005317.
    1. Hasanian-Langroudi F, Saravani R, Validad M-H, et al. Association of lysyl oxidase (LOX) polymorphisms with the risk of keratoconus in an Iranian population. Ophthalmic Genet. 2015;36:309–314. doi: 10.3109/13816810.2014.881507.
    1. Héon E, Greenberg A, Kopp KK, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11:1029–1036. doi: 10.1093/hmg/11.9.1029.
    1. Hoehn R, Zeller T, Verhoeven VJM, et al. Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Hum Genet. 2012;131:1783–1793. doi: 10.1007/s00439-012-1201-3.
    1. Hopfer U, Fukai N, Hopfer H, et al. Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. FASEB J Off Publ Fed Am Soc Exp Biol. 2005;19:1232–1244.
    1. Huang L, Zhang Q, Li S, et al. Exome sequencing of 47 Chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One. 2013;8:e65546. doi: 10.1371/journal.pone.0065546.
    1. Hughes AE, Dash DP, Jackson AJ, et al. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest Ophthalmol Vis Sci. 2003;44:5063–5066. doi: 10.1167/iovs.03-0399.
    1. Hughes AE, Bradley DT, Campbell M, et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet. 2011;89:628–633. doi: 10.1016/j.ajhg.2011.09.014.
    1. Hutchings H, Ginisty H, Le Gallo M, et al. Identification of a new locus for isolated familial keratoconus at 2p24. J Med Genet. 2005;42:88–94. doi: 10.1136/jmg.2004.022103.
    1. Igarashi S, Makita Y, Hikichi T, et al. Association of keratoconus and avellino corneal dystrophy. Br J Ophthalmol. 2003;87:367–368. doi: 10.1136/bjo.87.3.367.
    1. Iliff BW, Riazuddin SA, Gottsch JD. A single-base substitution in the seed region of miR-184 causes EDICT syndrome. Invest Ophthalmol Vis Sci. 2012;53:348–353. doi: 10.1167/iovs.11-8783.
    1. Jamuar SS, Lam A-TN, Kircher M, et al. Somatic mutations in cerebral cortical malformations. N Engl J Med. 2014;371:733–743. doi: 10.1056/NEJMoa1314432.
    1. Jeoung JW, Kim MK, Park SS, et al. VSX1 gene and keratoconus: genetic analysis in Korean patients. Cornea. 2012;31:746–750. doi: 10.1097/ICO.0b013e3181e16dd0.
    1. Jeyabalan N, Shetty R, Ghosh A, et al. Genetic and genomic perspective to understand the molecular pathogenesis of keratoconus. Indian J Ophthalmol. 2013;61:384–388. doi: 10.4103/0301-4738.116055.
    1. Jiang Y, Yuen RKC, Jin X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249–263. doi: 10.1016/j.ajhg.2013.06.012.
    1. Jinda W, Taylor TD, Suzuki Y, et al. Whole exome sequencing in Thai patients with retinitis pigmentosa reveals novel mutations in six genes. Invest Ophthalmol Vis Sci. 2014;55:2259–2268. doi: 10.1167/iovs.13-13567.
    1. Jun AS, Cope L, Speck C, et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS One. 2011;6:e16437. doi: 10.1371/journal.pone.0016437.
    1. Karolak JA, Kulinska K, Nowak DM, et al. Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus. Mol Vis. 2011;17:827–843.
    1. Karolak JA, Rydzanicz M, Ginter-Matuszewska B, et al. Variant c.2262A>C in DOCK9 leads to exon skipping in keratoconus family. Invest Ophthalmol Vis Sci. 2015;56:7687–7690. doi: 10.1167/iovs.15-17538.
    1. Karolak JA, Gambin T, Rydzanicz M, et al. Evidence against ZNF469 being causative for keratoconus in Polish patients. Acta Ophthalmol (Copenh) 2016;94:289–294. doi: 10.1111/aos.12968.
    1. Karolak JA, Polakowski P, Szaflik J, et al. Molecular Screening of Keratoconus Susceptibility Sequence Variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 Genes in Polish Patients and Novel TGFBI Variant Identification. Ophthalmic Genet. 2016;37:37–43.
    1. Karolak JA, Gambin T, Pitarque JA, et al. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1-q35.3 susceptibility locus identified by whole-exome sequencing. Eur J Hum Genet. 2017;25:73–78. doi: 10.1038/ejhg.2016.130.
    1. Kim S-H, Mok J-W, Kim H-S, Joo CK. Association of -31T>C and -511 C>T polymorphisms in the interleukin 1 beta (IL1B) promoter in Korean keratoconus patients. Mol Vis. 2008;14:2109–2116.
    1. Koboldt DC, Steinberg KM, Larson DE, et al. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155:27–38. doi: 10.1016/j.cell.2013.09.006.
    1. Kokolakis NS, Gazouli M, Chatziralli IP, et al. Polymorphism analysis of COL4A3 and COL4A4 genes in Greek patients with keratoconus. Ophthalmic Genet. 2014;35:226–228. doi: 10.3109/13816810.2014.946055.
    1. Kriszt A, Losonczy G, Berta A, et al. Segregation analysis suggests that keratoconus is a complex non-mendelian disease. Acta Ophthalmol (Copenh) 2014;92:e562–e568. doi: 10.1111/aos.12389.
    1. Kwofie MA, Skowronski J. Specific recognition of Rac2 and Cdc42 by DOCK2 and DOCK9 guanine nucleotide exchange factors. J Biol Chem. 2008;283:3088–3096. doi: 10.1074/jbc.M705170200.
    1. Lechner J, Bae HA, Guduric-Fuchs J, et al. Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest Ophthalmol Vis Sci. 2013;54:5266–5272. doi: 10.1167/iovs.13-12035.
    1. Lechner J, Porter LF, Rice A, et al. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus. Hum Mol Genet. 2014;23:5527–5535. doi: 10.1093/hmg/ddu253.
    1. Li X, Rabinowitz YS, Tang YG, et al. Two-stage genome-wide linkage scan in keratoconus sib pair families. Invest Ophthalmol Vis Sci. 2006;47:3791–3795. doi: 10.1167/iovs.06-0214.
    1. Li X, Bykhovskaya Y, Haritunians T, et al. A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. Hum Mol Genet. 2012;21:421–429. doi: 10.1093/hmg/ddr460.
    1. Li X, Bykhovskaya Y, Canedo ALC, et al. Genetic association of COL5A1 variants in keratoconus patients suggests a complex connection between corneal thinning and keratoconus. Invest Ophthalmol Vis Sci. 2013;54:2696–2704. doi: 10.1167/iovs.13-11601.
    1. Li X, Bykhovskaya Y, Tang YG, et al. An association between the calpastatin (CAST) gene and keratoconus. Cornea. 2013;32:696–701. doi: 10.1097/ICO.0b013e3182821c1c.
    1. Liskova P, Ebenezer ND, Hysi PG, et al. Molecular analysis of the VSX1 gene in familial keratoconus. Mol Vis. 2007;13:1887–1891.
    1. Liskova P, Hysi PG, Waseem N, et al. Evidence for keratoconus susceptibility locus on chromosome 14: a genome-wide linkage screen using single-nucleotide polymorphism markers. Arch Ophthalmol Chic ill. 2010;128(9):1191–1195. doi: 10.1001/archophthalmol.2010.200.
    1. Lomelin D, Jorgenson E, Risch N. Human genetic variation recognizes functional elements in noncoding sequence. Genome Res. 2010;20:311–319. doi: 10.1101/gr.094151.109.
    1. Lu Y, Dimasi DP, Hysi PG, et al. Common genetic variants near the Brittle Cornea syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet. 2010;6:e1000947. doi: 10.1371/journal.pgen.1000947.
    1. Lu Y, Vitart V, Burdon KP, et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 2013;45:155–163. doi: 10.1038/ng.2506.
    1. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–176. doi: 10.1056/NEJMra0905980.
    1. Mathew JH, Goosey JD, Bergmanson JPG. Quantified histopathology of the keratoconic cornea. Optom Vis Sci Off Publ Am Acad Optom. 2011;88:988–997. doi: 10.1097/OPX.0b013e31821ffbd4.
    1. Matthews FJ, Cook SD, Majid MA, et al. Changes in the balance of the tissue inhibitor of matrix metalloproteinases (TIMPs)-1 and -3 may promote keratocyte apoptosis in keratoconus. Exp Eye Res. 2007;84:1125–1134. doi: 10.1016/j.exer.2007.02.013.
    1. McMonnies CW. Mechanisms of rubbing-related corneal trauma in keratoconus. Cornea. 2009;28:607–615. doi: 10.1097/ICO.0b013e318198384f.
    1. McMonnies CW. Inflammation and keratoconus. Optom Vis Sci Off Publ Am Acad Optom. 2015;92:e35–e41. doi: 10.1097/OPX.0000000000000455.
    1. Meek KM, Tuft SJ, Huang Y, et al. Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci. 2005;46:1948–1956. doi: 10.1167/iovs.04-1253.
    1. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46. doi: 10.1038/nrg2626.
    1. Mikami T, Meguro A, Teshigawara T, et al. Interleukin 1 beta promoter polymorphism is associated with keratoconus in a Japanese population. Mol Vis. 2013;19:845–851.
    1. Mok J-W, Baek S-J, Joo C-K. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet. 2008;53:842–849. doi: 10.1007/s10038-008-0319-6.
    1. Moschos MM, Kokolakis N, Gazouli M, et al. Polymorphism Analysis of VSX1 and SOD1 genes in Greek patients with keratoconus. Ophthalmic Genet. 2015;36:213–217. doi: 10.3109/13816810.2013.843712.
    1. Moschos MM, Droutsas K, Sioziou A, et al. Mutational analysis of Pre-miR-184 and hsa-mir-568 in Greek patients with sporadic keratoconus. Cornea. 2016;35:631–633. doi: 10.1097/ICO.0000000000000769.
    1. Naderan M, Rajabi MT, Zarrinbakhsh P, et al. Association between family history and keratoconus severity. Curr Eye Res. 2016
    1. Nishiguchi KM, Tearle RG, Liu YP, et al. Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc Natl Acad Sci USA. 2013;110:16139–16144. doi: 10.1073/pnas.1308243110.
    1. Nowak D, Pitarque J, Molinari A, et al. Linkage analysis as an approach for disease-related loci identification. Comput Methods Sci Technol. 2012;18:95–101. doi: 10.12921/cmst.2012.18.02.95-101.
    1. Nowak DM, Karolak JA, Kubiak J, et al. Substitution at IL1RN and deletion at SLC4A11 segregating with phenotype in familial keratoconus. Invest Ophthalmol Vis Sci. 2013;54:2207–2215. doi: 10.1167/iovs.13-11592.
    1. Ortube MC, Strom SP, Nelson SF, et al. Whole exome sequencing detects homozygosity for ABCA4 p.Arg602Trp missense mutation in a pediatric patient with rapidly progressive retinal dystrophy. BMC Med Genet. 2014;15:11. doi: 10.1186/1471-2350-15-11.
    1. Palamar M, Onay H, Ozdemir TR, et al. Relationship between IL1β-511C>T and ILRN VNTR polymorphisms and keratoconus. Cornea. 2014;33:145–147. doi: 10.1097/ICO.0000000000000027.
    1. Paliwal P, Singh A, Tandon R, et al. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis. 2009;15:2475–2479.
    1. Paliwal P, Tandon R, Dube D, et al. Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus. Mol Vis. 2011;17:481–485.
    1. Patey A, Savoldelli M, Pouliquen Y. Keratoconus and normal cornea: a comparative study of the collagenous fibers of the corneal stroma by image analysis. Cornea. 1984;3:119–124. doi: 10.1097/00003226-198402000-00008.
    1. Pathak D, Nayak B, Singh M, et al. Mitochondrial complex 1 gene analysis in keratoconus. Mol Vis. 2011;17:1514–1525.
    1. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319. doi: 10.1016/S0039-6257(97)00119-7.
    1. Rosenfeld JA, Drautz JM, Clericuzio CL, et al. Deletions and duplications of developmental pathway genes in 5q31 contribute to abnormal phenotypes. Am J Med Genet A. 2011;155A:1906–1916. doi: 10.1002/ajmg.a.34100.
    1. Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51:5546–5555. doi: 10.1167/iovs.10-5369.
    1. Saee-Rad S, Hashemi H, Miraftab M, et al. Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus. Mol Vis. 2011;17:3128–3136.
    1. Sahebjada S, Schache M, Richardson AJ, et al. Evaluating the association between keratoconus and the corneal thickness genes in an independent Australian population. Invest Ophthalmol Vis Sci. 2013;54:8224–8228. doi: 10.1167/iovs.13-12982.
    1. Sahebjada S, Schache M, Richardson AJ, et al. Association of the hepatocyte growth factor gene with keratoconus in an Australian population. PLoS One. 2014;9:e84067. doi: 10.1371/journal.pone.0084067.
    1. Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M. Combined anterior keratoconus and Fuchs’ endothelial dystrophy: a report of two cases. Clin Exp Optom. 2010;93:268–270. doi: 10.1111/j.1444-0938.2010.00492.x.
    1. Saravani R, Hasanian-Langroudi F, Validad M-H, et al. Evaluation of possible relationship between COL4A4 gene polymorphisms and risk of keratoconus. Cornea. 2015;34:318–322. doi: 10.1097/ICO.0000000000000356.
    1. Sherwin T, Brookes NH. Morphological changes in keratoconus: pathology or pathogenesis. Clin Exp Ophthalmol. 2004;32:211–217. doi: 10.1111/j.1442-9071.2004.00805.x.
    1. Shetty R, Nuijts RMMA, Nanaiah SG, et al. Two novel missense substitutions in the VSX1 gene: clinical and genetic analysis of families with keratoconus from India. BMC Med Genet. 2015;16:33. doi: 10.1186/s12881-015-0178-x.
    1. Soler VJ, Tran-Viet K-N, Galiacy SD, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50:246–254. doi: 10.1136/jmedgenet-2012-101325.
    1. Stabuc-Silih M, Ravnik-Glavac M, Glavac D, et al. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol Vis. 2009;15:2848–2860.
    1. Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea. 2010;29:172–176. doi: 10.1097/ICO.0b013e3181aebf7a.
    1. Stachs O, Bochert A, Gerber T, et al. The extracellular matrix structure in keratoconus. Ophthalmol Z Dtsch Ophthalmol Ges. 2004;101:384–389.
    1. Steahly LP. Keratoconus following contact lens wear. Ann Ophthalmol. 1978;10:1177–1179.
    1. Sykakis E, Carley F, Irion L, et al. An in depth analysis of histopathological characteristics found in keratoconus. Pathology (Phila) 2012;44:234–239.
    1. Synowiec E, Wojcik KA, Izdebska J, et al. Polymorphisms of the homologous recombination gene RAD51 in keratoconus and Fuchs endothelial corneal dystrophy. Dis Markers. 2013;35:353–362. doi: 10.1155/2013/851817.
    1. Synowiec E, Wojcik KA, Izdebska J, et al. Polymorphisms of the apoptosis-related FAS and FAS ligand genes in keratoconus and Fuchs endothelial corneal dystrophy. Tohoku J Exp Med. 2014;234:17–27. doi: 10.1620/tjem.234.17.
    1. Synowiec E, Wojcik KA, Izdebska J, et al. Polymorphism of the LIG3 gene in keratoconus and Fuchs endothelial corneal dystrophy. Cell Mol Biol Noisy Gd Fr. 2015;61:56–63.
    1. Tang YG, Rabinowitz YS, Taylor KD et al (2005) Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med Off J Am Coll Med Genet 7:397–405. doi:10.109701.GIM.0000170772.41860.54
    1. Tang YG, Picornell Y, Su X, et al. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea. 2008;27:189–192. doi: 10.1097/ICO.0b013e31815a50e7.
    1. Tanwar M, Kumar M, Nayak B, et al. VSX1 gene analysis in keratoconus. Mol Vis. 2010;16:2395–2401.
    1. Toprak I, Kucukatay V, Yildirim C, et al. Increased systemic oxidative stress in patients with keratoconus. Eye Lond Engl. 2014;28:285–289.
    1. Tuft SJ, Hassan H, George S, et al. Keratoconus in 18 pairs of twins. Acta Ophthalmol (Copenh) 2012;90:e482–e486. doi: 10.1111/j.1755-3768.2012.02448.x.
    1. Tyynismaa H, Sistonen P, Tuupanen S, et al. A locus for autosomal dominant keratoconus: linkage to 16q22.3-q23.1 in Finnish families. Invest Ophthalmol Vis Sci. 2002;43:3160–3164.
    1. Udar N, Kenney MC, Chalukya M, et al. Keratoconus–no association with the transforming growth factor beta-induced gene in a cohort of American patients. Cornea. 2004;23:13–17. doi: 10.1097/00003226-200401000-00003.
    1. Udar N, Atilano SR, Brown DJ, et al. SOD1: a candidate gene for keratoconus. Invest Ophthalmol Vis Sci. 2006;47:3345–3351. doi: 10.1167/iovs.05-1500.
    1. Vazirani J, Basu S. Keratoconus: current perspectives. Clin Ophthalmol Auckl NZ. 2013;7:2019–2030.
    1. Verma A, Das M, Srinivasan M, et al. Investigation of VSX1 sequence variants in South Indian patients with sporadic cases of keratoconus. BMC Res Notes. 2013;6:103. doi: 10.1186/1756-0500-6-103.
    1. Villanueva A, Willer JR, Bryois J, et al. Whole exome sequencing of a dominant retinitis pigmentosa family identifies a novel deletion in PRPF31. Invest Ophthalmol Vis Sci. 2014;55:2121–2129. doi: 10.1167/iovs.13-13827.
    1. Vincent AL, Jordan C, Sheck L, et al. Screening the visual system homeobox 1 gene in keratoconus and posterior polymorphous dystrophy cohorts identifies a novel variant. Mol Vis. 2013;19:852–860.
    1. Vincent AL, Jordan CA, Cadzow MJ, et al. Mutations in the zinc finger protein gene, ZNF469, contribute to the pathogenesis of keratoconus. Invest Ophthalmol Vis Sci. 2014;55:5629–5635. doi: 10.1167/iovs.14-14532.
    1. Vitart V, Bencić G, Hayward C, et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet. 2010;19:4304–4311. doi: 10.1093/hmg/ddq349.
    1. Vithana EN, Aung T, Khor CC, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 2011;20:649–658. doi: 10.1093/hmg/ddq511.
    1. Wang Y, Jin T, Zhang X, et al. Common single nucleotide polymorphisms and keratoconus in the Han Chinese population. Ophthalmic Genet. 2013;34:160–166. doi: 10.3109/13816810.2012.743569.
    1. Weiss JS, Møller HU, Lisch W, et al. The IC3D classification of the corneal dystrophies. Cornea. 2008;27(Suppl 2):S1–S83. doi: 10.1097/ICO.0b013e31817780fb.
    1. Wilson SE, He YG, Weng J, et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;62:325–327. doi: 10.1006/exer.1996.0038.
    1. Wilson CM, D’Ath PJ, Parmar DN, Sykakis E. Keratoconus and granular dystrophy. BMJ Case Rep. 2014
    1. Wojcik KA, Blasiak J, Szaflik J, Szaflik JP. Role of biochemical factors in the pathogenesis of keratoconus. Acta Biochim Pol. 2014;61:55–62.
    1. Wojcik KA, Synowiec E, Polakowski P, et al. Polymorphism of the flap endonuclease 1 gene in keratoconus and Fuchs endothelial corneal dystrophy. Int J Mol Sci. 2014;15:14786–14802. doi: 10.3390/ijms150814786.
    1. Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of the transferrin gene in eye diseases: keratoconus and Fuchs endothelial corneal dystrophy. BioMed Res Int. 2013;2013:247438. doi: 10.1155/2013/247438.
    1. Zhao F, Wu J, Xue A, et al. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum Genet. 2013;132:913–921. doi: 10.1007/s00439-013-1303-6.

Source: PubMed

3
S'abonner