Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus

Samira Saee-Rad, Hassan Hashemi, Mohammad Miraftab, Mohammad Reza Noori-Daloii, Morteza Hashemzadeh Chaleshtori, Reza Raoofian, Fatemeh Jafari, Wayne Greene, Ghasem Fakhraie, Farhad Rezvan, Mansour Heidari, Samira Saee-Rad, Hassan Hashemi, Mohammad Miraftab, Mohammad Reza Noori-Daloii, Morteza Hashemzadeh Chaleshtori, Reza Raoofian, Fatemeh Jafari, Wayne Greene, Ghasem Fakhraie, Farhad Rezvan, Mansour Heidari

Abstract

Purpose: To evaluate mutations in the visual system homeobox gene 1 (VSX1) and superoxide dismutase 1 (SOD1) genes with keratoconus (KTCN), direct sequencing was performed in an Iranian population.

Methods: One hundred and twelve autosomal dominant KTCN patients and fifty-two unaffected individuals from twenty-six Iranian families, as well as one hundred healthy people as controls were enrolled. Genomic DNA was extracted from whole blood sample. Then to study the possible linkage between KTCN and six known loci linkage analysis was performed using 12 short tandem repeat (STR) markers. Also, the entire coding region and intron-exon boundaries of VSX1 and SOD1 were amplified by the PCR technique in each proband. Subsequently, PCR products were subjected to direct sequencing. Co-segregation analysis of the identified mutation was conducted in the family members. An Amplification Refractory Mutation System PCR (ARMS-PCR) was additionally employed for detection of the identified mutation in healthy controls.

Results: Linkage analysis of aforementioned loci did not detect evidence for linkage to KTCN. Direct PCR sequencing revealed two single nucleotide polymorphisms (SNPs; g.1502T>G and g.9683C>T), as well as two missense mutations that have been previously reported (R166W and H244R) in VSX1. We also found three undescribed SNPs (g.4886G>A, g.4990C>G, and g.9061T>A) in SOD1. The R166W and H244R mutations were co-segregated in affected family members but not in those that were unaffected. Moreover, the ARMS-PCR strategy did not detect the identified mutations in controls.

Conclusions: Our data suggest a significant association between KTCN patients and VSX1 genetic alterations (p.R166W and p.H244R). Although our findings support VSX1 as a plausible candidate gene responsible for keratoconus, other chromosomal loci and genes could be involved in KTCN development. Taken together, our results suggest that p.R166W and p.H244R could have possible pathogenic influences on KTCN.

Figures

Figure 1
Figure 1
Pedigree analysis and molecular study of Family 1. A: DNA sequencing revealed heterozygous missense mutation in the codon 244 VSX1 in which A→G (arrow indicates the position of nucleotide substitution). B: Amplification refractory mutation system (ARMS) for H244R VSX1 genotyping showing the co-segregation of the H244R VSX1 mutation among family members including two KTCN patients (III:1 and II:6) as well as in two individuals without KTCN clinical features (III:2 and II:5). PCR products of the internal control primer pair (383 bp), PCR product of the wild-type (WT) and mutant primer pairs (236 bp) are indicated. M, 50-bp ladder is present. C: The pedigree of Family 1 show four affected patients (arrow indicates the proband) and segregation of p.H244R through the family. Each individual was reported by age (in years), genotype and topography images. Filled symbols represent KTCN patient and open symbols reveal individuals without clinical KTCN.
Figure 2
Figure 2
Pedigree analysis and molecular study of Family 2. A: DNA sequencing chromatogram from heterozygous mutant of proband (II:1) showed missense mutation in codon 166 in which Arg was replaced by Trp (R166W C>T; arrow indicates the position of nucleotide substitution). B: The Pedigree of Family 2 indicates two affected patients (arrow indicates the proband) as well as the segregation of p.R166W in the family. The each family's member was presented by age (in years), genotype and topography images. Filled symbols show KTCN patient while open symbols represent persons without clinical KTCN.

References

    1. Gajecka M, Radhakrishna U, Winters D, Nath SK, Rydzanicz M, Ratnamala U, Ewing K, Molinari A, Pitarque JA, Lee K, Leal SM, Bejjani BA. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci. 2009;50:1531–9.
    1. Stabuc-Silih M, Ravnik-Glavac M, Glavac D, Hawlina M, Strazisar M. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol Vis. 2009;15:2848–60.
    1. Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis. 2011;17:667–72.
    1. Paliwal P, Singh A, Tandon R, Titiyal JS, Sharma A. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis. 2009;15:2475–9.
    1. Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am. 2003;16:607–20.
    1. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33:157–66.
    1. Newsome DAFJ, Hassell JR, Krachmer JH, Rodrigues MM, Katz SI. Detection of specific collagen types in normal and keratoconus corneas. Invest Ophthalmol Vis Sci. 1981;20:738–50.
    1. Wang Y, Rotter JI, Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. Am J Med Genet. 2000;93:403–9.
    1. Bisceglia L, De Bonis P, Pizzicoli C, Fischetti L, Laborante A, Di Perna M, Giuliani F, Delle Noci N, Buzzonetti L, Zelante L. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci. 2009;50:1081–6.
    1. Cullen JF. Mongolism (Down's Syndrome) and keratoconus. Br J Ophthalmol. 1963;47:321–30.
    1. Héon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, Priston M, Dorval KM, Chow RL, McInnes RR, Heathcote G, Westall C, Sutphin JE, Semina E, Bremner R, Stone EM. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11:1029–36.
    1. Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A, Latvala T, Alitalo T. A locus for autosomal dominant keratoconus: linkage to 16q22.3-q23.1 in Finnish families. Invest Ophthalmol Vis Sci. 2002;43:3160–4.
    1. Brancati F, Valente EM, Sarkozy A, Feher J, Castori M, Del Duca P, Mingarelli R, Pizzuti A, Dallapiccola B. A locus for autosomal dominant keratoconus maps to human chromosome 3p14-q13. J Med Genet. 2004;41:188–92.
    1. Hutchings H, Ginisty H, Le Gallo M, Levy D, Stoesser F, Rouland JF, Arne JL, Lalaux MH, Calvas P, Roth MP, Hovnanian A, Malecaze F. Identification of a new locus for isolated familial keratoconus at 2p24. J Med Genet. 2005;42:88–94.
    1. Dash DP, Silvestri G, Hughes AE. Fine mapping of the keratoconus with cataract locus on chromosome 15q and candidate gene analysis. Mol Vis. 2006;12:499–505.
    1. Hughes AE, Dash DP, Jackson AJ, Frazer DG, Silvestri G. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest Ophthalmol Vis Sci. 2003;44:5063–6.
    1. Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, Picornell Y, Yang H. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med. 2005;7:397–405.
    1. Bisceglia L, Ciaschetti M, De Bonis P, Campo PAP, Pizzicoli C, Scala C, Grifa M, Ciavarella P, Delle Noci N, Vaira F, Macaluso C, Zelante L. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci. 2005;46:39–45.
    1. Dash DP, George S, O'Prey D, Burns D, Nabili S, Donnelly U, Hughes AE, Silvestri G, Jackson J, Frazer D, Heon E, Willoughby CE. Mutational screening of VSX1 in keratoconus patients from the European population. Eye (Lond) 2010;24:1085–92.
    1. Mok J-W, Baek S-J, Joo C-K. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet. 2008;53:842–9.
    1. Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea. 2008;27:189–92.
    1. Udar N, Atilano SR, Brown DJ, Holguin B, Small K, Nesburn AB, Kenney MC. SOD1: a candidate gene for keratoconus. Invest Ophthalmol Vis Sci. 2006;47:3345–51.
    1. Udar N, Atilano SR, Small K, Nesburn AB, Kenney MC. SOD1 haplotypes in familial keratoconus. Cornea. 2009;28:902–7.
    1. Héon E, Mathers WD, Alward WL, Weisenthal RW, Sunden SL, Fishbaugh JA, Taylor CM, Krachmer JH, Sheffield VC, Stone EM. Linkage of posterior polymorphous corneal dystrophy to 20q11. Hum Mol Genet. 1995;4:485–8.
    1. Saffari M, Dinehkabodi OS, Ghaffari SH, Modarressi MH, Mansouri F, Heidari M. Identification of novel p53 target genes by cDNA AFLP in glioblastoma cells. Cancer Lett. 2009;273:316–22.
    1. Semina EV, Mintz-Hittner HA, Murray JC. Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues. Genomics. 2000;63:289–93.
    1. Grünauer-Kloevekorn C, Duncker GI. Keratoconus: epidemiology, risk factors and diagnosis. Klin Monatsbl Augenheilkd. 2006;223:493–502.
    1. Tanwar M, Kumar M, Nayak B, Pathak D, Sharma N, Titiyal JS, Dada R. VSX1 gene analysis in keratoconus. Mol Vis. 2010;16:2395–401.
    1. Valleix S, Nedelec B, Rigaudiere F, Dighiero P, Pouliquen Y, Renard G, Le Gargasson JF, Delpech M. H244R VSX1 is associated with selective cone ON bipolar cell dysfunction and macular degeneration in a PPCD family. Invest Ophthalmol Vis Sci. 2006;47:48–54.
    1. Cozma I, Atherley C, James NJ. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asian and white patients. Eye (Lond) 2005;19:924–5.
    1. Pearson AR, Soneji B, Sarvananthan N, Sandford-Smith JH. Does ethnic origin influence the incidence or severity of keratoconus? Eye (Lond) 2000;14:625–8.
    1. Aldave AJ, Yellore VS, Salem AK, Yoo GL, Rayner SA, Yang H, Tang GY, Piconell Y, Rabinowitz YS. No VSX1 gene mutations associated with keratoconus. Invest Ophthalmol Vis Sci. 2006;47:2820–2.
    1. Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea. 2010;29:172–6.
    1. Dorval KM, Bobechko BP, Ahmad KF, Bremner R. Transcriptional activity of the paired-like homeodomain proteins CHX10 and VSX1. J Biol Chem. 2005;280:10100–8.

Source: PubMed

3
S'abonner