Cognitive changes and neural correlates after oral rehabilitation procedures in older adults: a protocol for an interventional study

Linn Hedberg, Urban Ekman, Love Engström Nordin, Jan-Ivan Smedberg, Pia Skott, Åke Seiger, Gunilla Sandborgh-Englund, Eric Westman, Abhishek Kumar, Mats Trulsson, Linn Hedberg, Urban Ekman, Love Engström Nordin, Jan-Ivan Smedberg, Pia Skott, Åke Seiger, Gunilla Sandborgh-Englund, Eric Westman, Abhishek Kumar, Mats Trulsson

Abstract

Background: Epidemiological studies show an association between masticatory function and cognitive impairment. This has further strengthened the notion that tooth loss and impaired masticatory function may be risk factors for dementia and cognitive decline. Animal experiments have indicated a causal relationship and several possible mechanisms have been discussed. This evidence is, however, lacking in humans. Therefore, in the current interventional study, we aim to investigate the effect of rehabilitation of masticatory function on cognition in older adults.

Methods: Eighty patients indicated for prosthodontic rehabilitation will be randomly assigned to an experimental or a control group. Participants will conduct neuropsychological assessments, masticatory performance tests, saliva tests, optional magnetic resonance imaging, and answer questionnaires on oral health impact profiles and hospital anxiety and depression scale before, 3 months, and 1 year after oral rehabilitation. The difference between the two groups is that the control group will be tested an additional time, (at an interval of about 3 months) before the onset of the oral rehabilitation procedure. The primary outcome is a change in measures of episodic memory performance.

Discussion: Although tooth loss and masticatory function are widespread in older people, it is still an underexplored modifiable risk factor potentially contributing to the development of cognitive impairment. If rehabilitation of masticatory function shows positive effects on the neurocognitive function, this will have great implications on future health care for patients with impaired masticatory status. The present project may provide a new avenue for the prevention of cognitive decline in older individuals.

Trial registration: The protocol for the study was retrospectively registered in ClinicalTrials.gov Identifier: NCT04458207, dated 02-07-2020.

Keywords: Chewing performance; Episodic memory; Executive functions; Logical thinking; Magnetic resonance imaging; Visuospatial functions.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Overview of the study protocol

References

    1. Drummond N, Birtwhistle R, Williamson T, Khan S, Garies S, Molnar F. Prevalence and management of dementia in primary care practices with electronic medical records: a report from the Canadian Primary Care Sentinel Surveillance Network. CMAJ Open. 2016;4(2):E177–E184. doi: 10.9778/cmajo.20150050.
    1. O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98. doi: 10.1016/S1474-4422(03)00305-3.
    1. O'Brien JT, Markus HS. Vascular risk factors and Alzheimer's disease. BMC Med. 2014;12:218. doi: 10.1186/s12916-014-0218-y.
    1. Corrada MM, Brookmeyer R, Paganini-Hill A, Berlau D, Kawas CH. Dementia incidence continues to increase with age in the oldest old: the 90+ study. Ann Neurol. 2010;67(1):114–121. doi: 10.1002/ana.21915.
    1. Jorm AF, Jolley D. The incidence of dementia. A meta-analysis. Neurology. 1998;51(3):728–733. doi: 10.1212/WNL.51.3.728.
    1. Alzheimer's Association 2019 Alzheimer's disease facts and figures. Alzheimer's Dementia. 2019;15(3):321–387. doi: 10.1016/j.jalz.2019.01.010.
    1. Lin CS. Revisiting the link between cognitive decline and masticatory dysfunction. BMC Geriatr. 2018;18(1):5. doi: 10.1186/s12877-017-0693-z.
    1. Lin C-S. Functional adaptation of oromotor functions and aging: a focused review of the evidence from brain neuroimaging research. Front Aging Neurosci. 2020;11:354. doi: 10.3389/fnagi.2019.00354.
    1. Lin CS, Yeung AWK. What do we learn from brain imaging? A primer for the dentists who want to know more about the association between the brain and human stomatognathic functions. J Oral Rehabil. 2020.
    1. Fang W-L, Jiang M-J, Gu B-B, Wei Y-M, Fan S-N, Liao W, et al. Tooth loss as a risk factor for dementia: systematic review and meta-analysis of 21 observational studies. BMC Psychiatry. 2018;18(1):345. doi: 10.1186/s12888-018-1927-0.
    1. Chen J, Ren C-J, Wu L, Xia L-Y, Shao J, Leng W-D, et al. Tooth loss is associated with increased risk of dementia and with a dose–response relationship. Front Aging Neurosci. 2018;10:415. doi: 10.3389/fnagi.2018.00415.
    1. Stewart R, Weyant RJ, Garcia ME, Harris T, Launer LJ, Satterfield S, et al. Adverse oral health and cognitive decline: the health, aging and body composition study. J Am Geriatr Soc. 2013;61(2):177–184. doi: 10.1111/jgs.12094.
    1. Lexomboon D, Trulsson M, Wardh I, Parker MG. Chewing ability and tooth loss: association with cognitive impairment in an elderly population study. J Am Geriatr Soc. 2012;60(10):1951–1956. doi: 10.1111/j.1532-5415.2012.04154.x.
    1. Weijenberg RA, Scherder EJ, Lobbezoo F. Mastication for the mind: the relationship between mastication and cognition in ageing and dementia. Neurosci Biobehav Rev. 2011;35(3):483–497. doi: 10.1016/j.neubiorev.2010.06.002.
    1. Miura H, Yamasaki K, Kariyasu M, Miura K, Sumi Y. Relationship between cognitive function and mastication in elderly females. J Oral Rehabil. 2003;30(8):808–811. doi: 10.1046/j.1365-2842.2003.01124.x.
    1. Tsakos G, Watt RG, Rouxel PL, de Oliveira C, Demakakos P. Tooth loss associated with physical and cognitive decline in older adults. J Am Geriatr Soc. 2015;63(1):91–99. doi: 10.1111/jgs.13190.
    1. Mummolo S, Ortu E, Necozione S, Monaco A, Marzo G. Relationship between mastication and cognitive function in elderly in L’Aquila. Int J Clin Exp Med. 2014;7(4):1040–1046.
    1. Ohkubo C, Morokuma M, Yoneyama Y, Matsuda R, Lee JS. Interactions between occlusion and human brain function activities. J Oral Rehabil. 2013;40(2):119–129. doi: 10.1111/j.1365-2842.2012.02316.x.
    1. Ono Y, Yamamoto T, Kubo KY, Onozuka M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J Oral Rehabil. 2010;37(8):624–640.
    1. Onozuka M, Watanabe K, Mirbod SM, Ozono S, Nishiyama K, Karasawa N, et al. Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice. Brain Res. 1999;826(1):148–153. doi: 10.1016/S0006-8993(99)01255-X.
    1. Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, et al. Reduced mastication impairs memory function. J Dent Res. 2017;96(9):1058–1066. doi: 10.1177/0022034517708771.
    1. Kubo KY, Yamada Y, Iinuma M, Iwaku F, Tamura Y, Watanabe K, et al. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice. Neurosci Lett. 2007;414(2):188–191. doi: 10.1016/j.neulet.2006.12.020.
    1. Ichihashi Y, Arakawa Y, Iinuma M, Tamura Y, Kubo K-Y, Iwaku F, et al. Occlusal disharmony attenuates glucocorticoid negative feedback in aged SAMP8 mice. Neurosci Lett. 2007;427(2):71–76. doi: 10.1016/j.neulet.2007.09.020.
    1. Kawahata M, Ono Y, Ohno A, Kawamoto S, Kimoto K, Onozuka M. Loss of molars early in life develops behavioral lateralization and impairs hippocampus-dependent recognition memory. BMC Neurosci. 2014;15:4. doi: 10.1186/1471-2202-15-4.
    1. Watanabe K, Tonosaki K, Kawase T, Karasawa N, Nagatsu I, Fujita M, et al. Evidence for involvement of dysfunctional teeth in the senile process in the hippocampus of SAMP8 mice. Exp Gerontol. 2001;36(2):283–295. doi: 10.1016/S0531-5565(00)00216-3.
    1. Onozuka M, Watanabe K, Nagasaki S, Jiang Y, Ozono S, Nishiyama K, et al. Impairment of spatial memory and changes in astroglial responsiveness following loss of molar teeth in aged SAMP8 mice. Behav Brain Res. 2000;108(2):145–155. doi: 10.1016/S0166-4328(99)00145-X.
    1. Okihara H, Ito J, Kokai S, Ishida T, Hiranuma M, Kato C, et al. Liquid diet induces memory impairment accompanied by a decreased number of hippocampal neurons in mice. J Neurosci Res. 2014;92(8):1010–1017. doi: 10.1002/jnr.23383.
    1. Aoki H, Kimoto K, Hori N, Toyoda M. Cell proliferation in the dentate gyrus of rat hippocampus is inhibited by soft diet feeding. Gerontology. 2005;51(6):369–374. doi: 10.1159/000088700.
    1. Tada A, Miura H. Association between mastication and cognitive status: a systematic review. Arch Gerontol Geriatr. 2017;70:44–53. doi: 10.1016/j.archger.2016.12.006.
    1. Shin HE, Cho MJ, Amano A, Song KB, Choi YH. Association between mastication-related factors and the prevalence of dementia in Korean elderly women visiting senior centres. Gerodontology. 2019.
    1. Kim EK, Lee SK, Choi YH, Tanaka M, Hirotsu K, Kim HC, et al. Relationship between chewing ability and cognitive impairment in the rural elderly. Arch Gerontol Geriatr. 2017;70:209–213. doi: 10.1016/j.archger.2017.02.006.
    1. Kimura Y, Ogawa H, Yoshihara A, Yamaga T, Takiguchi T, Wada T, et al. Evaluation of chewing ability and its relationship with activities of daily living, depression, cognitive status and food intake in the community-dwelling elderly. Geriatr Gerontol Int. 2013;13(3):718–725. doi: 10.1111/ggi.12006.
    1. Onozuka M, Fujita M, Watanabe K, Hirano Y, Niwa M, Nishiyama K, et al. Mapping brain region activity during chewing: a functional magnetic resonance imaging study. J Dent Res. 2002;81(11):743–746. doi: 10.1177/0810743.
    1. Narita N, Kamiya K, Yamamura K, Kawasaki S, Matsumoto T, Tanaka N. Chewing-related prefrontal cortex activation while wearing partial denture prosthesis: pilot study. J Prosthodont Res. 2009;53(3):126–135. doi: 10.1016/j.jpor.2009.02.005.
    1. Habib R, Nyberg L, Nilsson LG. Cognitive and non-cognitive factors contributing to the longitudinal identification of successful older adults in the betula study. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14(3):257–273. doi: 10.1080/13825580600582412.
    1. Ikebe K, Matsuda K, Murai S, Maeda Y, Nokubi T. Validation of the Eichner index in relation to occlusal force and masticatory performance. Int J Prosthodont. 2010;23(6):521–524.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Houx PJ, Shepherd J, Blauw GJ, Murphy MB, Ford I, Bollen EL, et al. Testing cognitive function in elderly populations: the PROSPER study. PROspective Study of Pravastatin in the Elderly at Risk. J Neurol Neurosurg Psychiatry. 2002;73(4):385–389. doi: 10.1136/jnnp.73.4.385.
    1. Bohn MJ, Babor TF, Kranzler HR. The Alcohol Use Disorders Identification Test (AUDIT): validation of a screening instrument for use in medical settings. J Stud Alcohol. 1995;56(4):423–432. doi: 10.15288/jsa.1995.56.423.
    1. Reinert DF, Allen JP. The alcohol use disorders identification test: an update of research findings. Alcohol Clin Exp Res. 2007;31(2):185–199. doi: 10.1111/j.1530-0277.2006.00295.x.
    1. Larsson P, List T, Lundstrom I, Marcusson A, Ohrbach R. Reliability and validity of a Swedish version of the Oral Health Impact Profile (OHIP-S) Acta Odontol Scand. 2004;62(3):147–152. doi: 10.1080/00016350410001496.
    1. Lisspers J, Nygren A, Söderman E. Hospital Anxiety and Depression Scale (HAD): some psychometric data for a Swedish sample. Acta Psychiatr Scand. 1997;96(4):281–286. doi: 10.1111/j.1600-0447.1997.tb10164.x.
    1. Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B. Revision of the brief visuospatial memory test: studies of normal performance, reliability, and validity. Psychol Assess. 1996;8(2):145–153. doi: 10.1037/1040-3590.8.2.145.
    1. Schimmel M, Christou P, Herrmann F, Muller F. A two-colour chewing gum test for masticatory efficiency: development of different assessment methods. J Oral Rehabil. 2007;34(9):671–678. doi: 10.1111/j.1365-2842.2007.01773.x.
    1. Schimmel M, Christou P, Miyazaki H, Halazonetis D, Herrmann FR, Muller F. A novel colourimetric technique to assess chewing function using two-coloured specimens: validation and application. J Dent. 2015;43(8):955–964. doi: 10.1016/j.jdent.2015.06.003.
    1. Schmidt M. Rey Auditory Verbal Learning Test: RAVLT : a Handbook: Western Psychological Services; 1996.
    1. Fine EM, Delis DC. Delis-Kaplan executive functioning system. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. New York: Springer; 2011. pp. 796–801.
    1. Ryan JJ, Gontkovsky ST, Kreiner DS, Tree HA. Wechsler Adult Intelligence Scale-Fourth Edition performance in relapsing–remitting multiple sclerosis. J Clin Exp Neuropsychol. 2012;34(6):571–579. doi: 10.1080/13803395.2012.666229.
    1. Muehlboeck JS, Westman E, Simmons A. TheHiveDB image data management and analysis framework. Front Neuroinform. 2014;7:49. doi: 10.3389/fninf.2013.00049.
    1. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, Tsolaki M, et al. The AddNeuroMed framework for multi-centre MRI assessment of Alzheimer's disease: experience from the first 24 months. Int J Geriatr Psychiatry. 2011;26(1):75–82. doi: 10.1002/gps.2491.
    1. Watanabe K, Ozono S, Nishiyama K, Saito S, Tonosaki K, Fujita M, et al. The molarless condition in aged SAMP8 mice attenuates hippocampal Fos induction linked to water maze performance. Behav Brain Res. 2002;128(1):19–25. doi: 10.1016/S0166-4328(01)00268-6.
    1. Bergdahl M, Habib R, Bergdahl J, Nyberg L, Nilsson L-G. Natural teeth and cognitive function in humans. Scand J Psychol. 2007;48(6):557–565. doi: 10.1111/j.1467-9450.2007.00610.x.
    1. Paganini-Hill A, White SC, Atchison KA. Dentition, dental health habits, and dementia: the Leisure World Cohort Study. J Am Geriatr Soc. 2012;60(8):1556–1563. doi: 10.1111/j.1532-5415.2012.04064.x.
    1. Schimmel M, Memedi K, Parga T, Katsoulis J, Müller F. Masticatory performance and maximum bite and lip force depend on the type of prosthesis. Int J Prosthodont. 2017;30(6):565–572. doi: 10.11607/ijp.5289.
    1. Fueki K, Kimoto K, Ogawa T, Garrett NR. Effect of implant-supported or retained dentures on masticatory performance: a systematic review. J Prosthet Dent. 2007;98(6):470–477. doi: 10.1016/S0022-3913(07)60147-4.
    1. Sailer I, Strasding M, Valente NA, Zwahlen M, Liu S, Pjetursson BE. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin Oral Implants Res. 2018;29(Suppl 16):184–198. doi: 10.1111/clr.13277.
    1. Pjetursson BE, Tan K, Lang NP, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res. 2004;15(6):625–642. doi: 10.1111/j.1600-0501.2004.01117.x.
    1. Alsterstål-Englund H, Moberg L-E, Petersson J, Smedberg J-I. A retrospective clinical evaluation of extensive tooth-supported fixed dental prostheses after 10 years. J Prosthet Dentistry. 2020.
    1. Tan D, Foster S, Korgaonkar MS, Oxenham V, Whittle T, Klineberg I. The role of progressive oral implant rehabilitation in mastication, cognition and oral health-related quality of life outcomes—a pilot to define the protocol. J Oral Rehabil.
    1. Iwata K, Sessle BJ. The evolution of neuroscience as a research field relevant to dentistry. J Dent Res. 2019;98(13):1407–1417. doi: 10.1177/0022034519875724.
    1. Deng H, Gao S, Lu S, Kumar A, Zhang Z, Svensson P. Alteration of occlusal vertical dimension induces signs of neuroplastic changes in corticomotor control of masseter muscles: preliminary findings. J Oral Rehabil. 2018;45(9):710–719. doi: 10.1111/joor.12682.
    1. Kumar A, Svensson KG, Baad-Hansen L, Trulsson M, Isidor F, Svensson P. Optimization of jaw muscle activity and fine motor control during repeated biting tasks. Arch Oral Biol. 2014;59(12):1342–1351. doi: 10.1016/j.archoralbio.2014.08.009.
    1. Kumar A, Tanaka Y, Grigoriadis A, Grigoriadis J, Trulsson M, Svensson P. Training-induced dynamics of accuracy and precision in human motor control. Sci Rep. 2017;7(1):6784. doi: 10.1038/s41598-017-07078-y.
    1. Kumar A, Tanaka Y, Takahashi K, Grigoriadis A, Wiesinger B, Svensson P, et al. Vibratory stimulus to the masseter muscle impairs the oral fine motor control during biting tasks. J Prosthodont Res. 2019;63(3):354–360. doi: 10.1016/j.jpor.2018.10.011.
    1. Zhang H, Kumar A, Kothari M, Luo X, Trulsson M, Svensson KG, et al. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles? Exp Brain Res. 2016;234(7):1935–1943. doi: 10.1007/s00221-016-4598-4.
    1. Almotairy N, Kumar A, Trulsson M, Grigoriadis A. Development of the jaw sensorimotor control and chewing: a systematic review. Physiol Behav. 2018;194:456–465. doi: 10.1016/j.physbeh.2018.06.037.
    1. Grigoriadis A, Johansson RS, Trulsson M. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles. J Oral Rehabil. 2014;41(5):367–373. doi: 10.1111/joor.12155.
    1. Almotairy N, Kumar A, Noirrit-Esclassan E, Grigoriadis A. Developmental and age-related changes in sensorimotor regulation of biting maneuvers in humans. Physiol Behav. 2020;219:112845. doi: 10.1016/j.physbeh.2020.112845.
    1. Almotairy N, Kumar A, Grigoriadis A. Motor control strategies during unpredictable force control tasks in humans. J Oral Rehabil. 2020;47(10):1222–1232. doi: 10.1111/joor.13052.
    1. Almotairy N, Kumar A, Welander N, Grigoriadis A. Age-related changes in oral motor-control strategies during unpredictable load demands in humans.Eur. J Oral Sci. 2020;128(4):299–307. doi: 10.1111/eos.12721.
    1. Grigoriadis A, Kumar A, Åberg MK, Trulsson M. Effect of sudden deprivation of sensory inputs from periodontium on mastication. Front Neurosci. 2019;13:1316. doi: 10.3389/fnins.2019.01316.
    1. Grigoriadis J, Kumar A, Svensson P, Svensson KG, Trulsson M. Perturbed oral motor control due to anesthesia during intraoral manipulation of food. Sci Rep. 2017;7:46691. doi: 10.1038/srep46691.
    1. Kumar A, Castrillon E, Trulsson M, Svensson KG, Svensson P. Fine motor control of the jaw following alteration of orofacial afferent inputs. Clin Oral Investig. 2017;21(2):613–626. doi: 10.1007/s00784-016-1939-4.
    1. Avivi-Arber L, Lee JC, Sessle BJ. Dental occlusal changes induce motor cortex neuroplasticity. J Dent Res. 2015;94(12):1757–1764. doi: 10.1177/0022034515602478.
    1. Kumar A, Grigoriadis J, Trulsson M, Svensson P, Svensson KG. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task. Neuroscience. 2015;306:10–17. doi: 10.1016/j.neuroscience.2015.06.065.
    1. Kumar A, Koullia N, Jongenburger M, Koutris M, Lobbezoo F, Trulsson M, et al. Behavioral learning and skill acquisition during a natural yet novel biting task. Physiol Behav. 2019;211:112667. doi: 10.1016/j.physbeh.2019.112667.
    1. Zhang H KA, Kothari M, Luo X, Trulsson M, Svensson KG, Svensson P. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles? (Submitted). 2015
    1. Grigoriadis A, Trulsson M. Excitatory drive of masseter muscle during mastication with dental implants. Sci Rep. 2018;8(1):8597. doi: 10.1038/s41598-018-26926-z.
    1. Kumar A, Kothari M, Grigoriadis A, Trulsson M, Svensson P. Bite or brain: implication of sensorimotor regulation and neuroplasticity in oral rehabilitation procedures. J Oral Rehabil. 2018;45(4):323–333. doi: 10.1111/joor.12603.
    1. Sessle BJ. Mechanisms of oral somatosensory and motor functions and their clinical correlates. J Oral Rehabil. 2006;33(4):243–261. doi: 10.1111/j.1365-2842.2006.01623.x.

Source: PubMed

3
S'abonner