Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: An observational, multicenter study

Eric Peter Thelin, David W Nelson, Juho Vehviläinen, Harriet Nyström, Riku Kivisaari, Jari Siironen, Mikael Svensson, Markus B Skrifvars, Bo-Michael Bellander, Rahul Raj, Eric Peter Thelin, David W Nelson, Juho Vehviläinen, Harriet Nyström, Riku Kivisaari, Jari Siironen, Mikael Svensson, Markus B Skrifvars, Bo-Michael Bellander, Rahul Raj

Abstract

Background: Traumatic brain injury (TBI) is a major contributor to morbidity and mortality. Computerized tomography (CT) scanning of the brain is essential for diagnostic screening of intracranial injuries in need of neurosurgical intervention, but may also provide information concerning patient prognosis and enable baseline risk stratification in clinical trials. Novel CT scoring systems have been developed to improve current prognostic models, including the Stockholm and Helsinki CT scores, but so far have not been extensively validated. The primary aim of this study was to evaluate the Stockholm and Helsinki CT scores for predicting functional outcome, in comparison with the Rotterdam CT score and Marshall CT classification. The secondary aims were to assess which individual components of the CT scores best predict outcome and what additional prognostic value the CT scoring systems contribute to a clinical prognostic model.

Methods and findings: TBI patients requiring neuro-intensive care and not included in the initial creation of the Stockholm and Helsinki CT scoring systems were retrospectively included from prospectively collected data at the Karolinska University Hospital (n = 720 from 1 January 2005 to 31 December 2014) and Helsinki University Hospital (n = 395 from 1 January 2013 to 31 December 2014), totaling 1,115 patients. The Marshall CT classification and the Rotterdam, Stockholm, and Helsinki CT scores were assessed using the admission CT scans. Known outcome predictors at admission were acquired (age, pupil responsiveness, admission Glasgow Coma Scale, glucose level, and hemoglobin level) and used in univariate, and multivariable, regression models to predict long-term functional outcome (dichotomizations of the Glasgow Outcome Scale [GOS]). In total, 478 patients (43%) had an unfavorable outcome (GOS 1-3). In the combined cohort, overall prognostic performance was more accurate for the Stockholm CT score (Nagelkerke's pseudo-R2 range 0.24-0.28) and the Helsinki CT score (0.18-0.22) than for the Rotterdam CT score (0.13-0.15) and Marshall CT classification (0.03-0.05). Moreover, the Stockholm and Helsinki CT scores added the most independent prognostic value in the presence of other known clinical outcome predictors in TBI (6% and 4%, respectively). The aggregate traumatic subarachnoid hemorrhage (tSAH) component of the Stockholm CT score was the strongest predictor of unfavorable outcome. The main limitations were the retrospective nature of the study, missing patient information, and the varying follow-up time between the centers.

Conclusions: The Stockholm and Helsinki CT scores provide more information on the damage sustained, and give a more accurate outcome prediction, than earlier classification systems. The strong independent predictive value of tSAH may reflect an underrated component of TBI pathophysiology. A change to these newer CT scoring systems may be warranted.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Patient flow diagram.
Fig 1. Patient flow diagram.
Flowchart diagram of the eligible patients and screening process to exclude patients who did not fulfill inclusion criteria. CT, computerized tomography; NICU, neuro-intensive care unit; TBI, traumatic brain surgery.
Fig 2. Different CT scores versus outcome.
Fig 2. Different CT scores versus outcome.
Spine plots were used to illustrate how different levels of GOS relate to an increasing CT severity score for the Stockholm (A), Helsinki (B), and Rotterdam (C) CT scores and the Marshall CT classification (D). Glasgow Outcome Scale (y-axis, left), the CT score (x-axis), and outcome proportions summing to 1 (y-axis, right) are given for all panels. The sizes of the bins correspond to the number of patients in each category. CT, computerized tomography.

References

    1. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53.
    1. Jennett B. Epidemiology of head injury. J Neurol Neurosurg Psychiatry. 1996;60(4):362–9.
    1. Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231–6. doi:
    1. Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir (Wien). 1976;34(1–4):45–55.
    1. Maas AI, Murray GD, Roozenbeek B, Lingsma HF, Butcher I, McHugh GS, et al. Advancing care for traumatic brain injury: findings from the IMPACT studies and perspectives on future research. Lancet Neurol. 2013;12(12):1200–10. doi:
    1. Marshall LF, Marshall SB, Klauber MR, Clark MV, Eisenberg HM, Jane JA, et al. A new classification of head-injury based on computerized-tomography. J Neurosurg. 1991;75:S14–20.
    1. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):e165 doi:
    1. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57(6):1173–82.
    1. Nelson DW, Nystrom H, MacCallum RM, Thornquist B, Lilja A, Bellander BM, et al. Extended analysis of early computed tomography scans of traumatic brain injured patients and relations to outcome. J Neurotrauma. 2010;27(1):51–64. doi:
    1. Raj R, Siironen J, Skrifvars MB, Hernesniemi J, Kivisaari R. Predicting outcome in traumatic brain injury: development of a novel computerized tomography classification system (Helsinki computerized tomography score). Neurosurgery. 2014;75(6):632–46. doi:
    1. Olivecrona M, Olivecrona Z, Koskinen L. The Stockholm Score for the prediction of outcome in persons with severe traumatic brain injury treated with an ICP-targeted therapy. J Neurotrauma. 2016;33(3):A–34.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9. doi:
    1. PLOS Medicine Editors. Observational studies: getting clear about transparency. PLoS Med. 2014;11(8):e1001711 doi:
    1. Zuercher M, Ummenhofer W, Baltussen A, Walder B. The use of Glasgow Coma Scale in injury assessment: a critical review. Brain Inj. 2009;23(5):371–84. doi:
    1. Brain Trauma Foundation. Management and prognosis of severe traumatic brain injury. Campbell (California): Brain Trauma Foundation; 2000.
    1. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, AANS/CNS Joint Section on Neurotrauma and Critical Care. Guidelines for the management of severe traumatic brain injury. 3rd edition J Neurotrauma. 2007;24(Suppl 1):S1–106. doi:
    1. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41(9):1517–28. doi:
    1. Kakarieka A. Review on traumatic subarachnoid hemorrhage. Neurol Res. 1997;19(3):230–2.
    1. Ringdal KG, Coats TJ, Lefering R, Di Bartolomeo S, Steen PA, Roise O, et al. The Utstein template for uniform reporting of data following major trauma: a joint revision by SCANTEM, TARN, DGU-TR and RITG. Scand J Trauma Resusc Emerg Med. 2008;16:7 doi:
    1. Perel P, Arango M, Clayton T, Edwards P, Komolafe E, Poccock S, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ. 2008;336(7641):425–9. doi:
    1. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.
    1. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1(7905):480–4.
    1. R Core Team. R: a language and environment for statistical computing. Version 3.3.2 Vienna: R Foundation for Statistical Computing; 2016.
    1. Murray GD, Butcher I, McHugh GS, Lu J, Mushkudiani NA, Maas AI, et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):329–37. doi:
    1. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol. 2010;10:7 doi:
    1. Velmahos GC, Gervasini A, Petrovick L, Dorer DJ, Doran ME, Spaniolas K, et al. Routine repeat head CT for minimal head injury is unnecessary. J Trauma. 2006;60(3):494–9. doi:
    1. Hukkelhoven CW, Steyerberg EW, Farace E, Habbema JD, Marshall LF, Maas AI. Regional differences in patient characteristics, case management, and outcomes in traumatic brain injury: experience from the tirilazad trials. J Neurosurg. 2002;97(3):549–57. doi:
    1. Raj R, Skrifvars MB, Kivisaari R, Hernesniemi J, Lappalainen J, Siironen J. Acute alcohol intoxication and long-term outcome in patients with traumatic brain injury. J Neurotrauma. 2015;32(2):95–100. doi:
    1. Servadei F, Murray GD, Penny K, Teasdale GM, Dearden M, Iannotti F, et al. The value of the “worst” computed tomographic scan in clinical studies of moderate and severe head injury. European Brain Injury Consortium. Neurosurgery. 2000;46(1):70–5.
    1. Greene KA, Marciano FF, Johnson BA, Jacobowitz R, Spetzler RF, Harrington TR. Impact of traumatic subarachnoid hemorrhage on outcome in nonpenetrating head injury. Part I: a proposed computerized tomography grading scale. J Neurosurg. 1995;83(3):445–52. doi:
    1. Wardlaw JM, Easton VJ, Statham P. Which CT features help predict outcome after head injury? J Neurol Neurosurg Psychiatry. 2002;72(2):188–92. doi:
    1. Armin SS, Colohan AR, Zhang JH. Traumatic subarachnoid hemorrhage: our current understanding and its evolution over the past half century. Neurol Res. 2006;28(4):445–52. doi:
    1. Hellewell S, Semple BD, Morganti-Kossmann MC. Therapies negating neuroinflammation after brain trauma. Brain Res. 2016;1640(Pt A):36–56. doi:
    1. Wallesch CW, Curio N, Kutz S, Jost S, Bartels C, Synowitz H. Outcome after mild-to-moderate blunt head injury: effects of focal lesions and diffuse axonal injury. Brain Inj. 2001;15(5):401–12. doi:
    1. Hoogmartens O, Heselmans A, Van de Velde S, Castren M, Sjolin H, Sabbe M, et al. Evidence-based prehospital management of severe traumatic brain injury: a comparative analysis of current clinical practice guidelines. Prehosp Emerg Care. 2014;18(2):265–73. doi:
    1. Kim YJ. The impact of time to surgery on outcomes in patients with traumatic brain injury: a literature review. Int Emerg Nurs. 2014;22(4):214–9. doi:
    1. Flynn-O’Brien KT, Fawcett VJ, Nixon ZA, Rivara FP, Davidson GH, Chesnut RM, et al. Temporal trends in surgical intervention for severe traumatic brain injury caused by extra-axial hemorrhage, 1995 to 2012. Neurosurgery. 2015;76(4):451–60. doi:
    1. Servadei F. Prognostic factors in severely head injured adult patients with acute subdural haematoma’s. Acta Neurochir (Wien). 1997;139(4):279–85.
    1. Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.
    1. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating Statistics for biology and health. New York: Springer Science+Business Media; 2009.
    1. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.
    1. Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144(3):201–9.
    1. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130(6):515–24.
    1. Maas AI, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2015;76(1):67–80. doi:
    1. Miller KJ, Schwab KA, Warden DL. Predictive value of an early Glasgow Outcome Scale score: 15-month score changes. J Neurosurg. 2005;103(2):239–45. doi:
    1. Corral L, Ventura JL, Herrero JI, Monfort JL, Juncadella M, Gabarros A, et al. Improvement in GOS and GOSE scores 6 and 12 months after severe traumatic brain injury. Brain Inj. 2007;21(12):1225–31. doi:
    1. Balestreri M, Czosnyka M, Chatfield DA, Steiner LA, Schmidt EA, Smielewski P, et al. Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. J Neurol Neurosurg Psychiatry. 2004;75(1):161–2.
    1. Bledsoe BE, Casey MJ, Feldman J, Johnson L, Diel S, Forred W, et al. Glasgow Coma Scale scoring is often inaccurate. Prehosp Disaster Med. 2015:30(1):46–53. doi:
    1. Stocchetti N, Pagan F, Calappi E, Canavesi K, Beretta L, Citerio G, et al. Inaccurate early assessment of neurological severity in head injury. J Neurotrauma. 2004;21(9):1131–40. doi:

Source: PubMed

3
S'abonner