The Relation between Red Meat and Whole-Grain Intake and the Colonic Mucosal Barrier: A Cross-Sectional Study

Mohamad Jawhara, Signe Bek Sørensen, Berit Lilienthal Heitmann, Þórhallur Ingi Halldórsson, Andreas Kristian Pedersen, Vibeke Andersen, Mohamad Jawhara, Signe Bek Sørensen, Berit Lilienthal Heitmann, Þórhallur Ingi Halldórsson, Andreas Kristian Pedersen, Vibeke Andersen

Abstract

The Colonic Mucosal Barrier (CMB) is the site of interaction between the human body and the colonic microbiota. The mucus is the outer part of the CMB and is considered as the front-line defense of the colon. It separates the host epithelial lining from the colonic content, and it has previously been linked to health and diseases. In this study, we assessed the relationship between red meat and whole-grain intake and (1) the thickness of the colonic mucus (2) the expression of the predominant mucin gene in the human colon (MUC2). Patients referred to colonoscopy at the University Hospital of Southern Denmark- Sonderjylland were enrolled between June 2017 and December 2018, and lifestyle data was collected in a cross-sectional study design. Colonic biopsies, blood, urine, and fecal samples were collected. The colonic mucus and bacteria were visualized by immunostaining and fluorescence in situ hybridization techniques. We found a thinner mucus was associated with high red meat intake. Similarly, the results suggested a thinner mucus was associated with high whole-grain intake, albeit to a lesser extent than red meat. This is the first study assessing the association between red meat and whole-grain intake and the colonic mucus in humans. This study is approved by the Danish Ethics Committee (S-20160124) and the Danish Data Protecting Agency (2008-58-035). A study protocol was registered at clinical trials.gov under NCT04235348.

Keywords: MUC2; colonic mucosal barrier; human colon; large intestine; mucin; mucus; red meat; whole-grain.

Conflict of interest statement

The authors declare no conflicts of interest. The funders had no role in the study design, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
This figure represents the methods used in the selection of participants for assessment of mucus thickness in biopsies from colon sigmoideum based on their reported dietary intake of red meat and whole-grain. The two left and right major ellipsoids represent the 159 recruited subjects, ordered after the reported intake of red meat and whole-grain, respectively. Note that the two axes representing the proportions of the sample at the left and right side of the figure are in opposite directions. The pink and brown areas represent the upper 5th percentiles of the sample with respect to red meat and whole-grain intake, respectively. The red and yellow areas represent the lower 5th percentiles of the sample, with respect to red meat and whole-grain intake, respectively. The circles illustrate subjects found uniquely in one 5th percentile. The two-colored circles illustrate four subjects found in more than one 5th percentile simultaneously (eight two-colored circles). Furthermore, the upper rectangle included subjects located simultaneously at the upper red meat and lower whole-grain quartiles (n = 8). The lower rectangle included subjects located simultaneously at the lower red meat and upper whole-grain quartiles (n = 5). The sum of these subjects (n = 39 was selected as the targeted study population.
Figure 2
Figure 2
MUC2 staining of colonic mucosa. These images represent the immuno- and DAPI fluorescent stained mucus of the colon sigmoideum from two different subjects. Images (A,B) are from subject 1, and (C,D) are from subject 2. The mucus is stained in green using Anti-MUC2 antibody (Ccp58) (ab118964) in all images. In subject 1: Image (A) represents the fluorescence immunostaining of the mucus (green). The white arrow indicates the inner mucus from the apical membrane side. The red arrow is located in a colonic crypt and indicates the colonic goblet cells; Image (B) represents the fluorescent immunostaining of the mucus (green), DAPI staining of mononuclear cells (blue), where the Brightfield filter was applied. The blue arrow indicates the luminal side of the inner mucus surface. In subject 2, image (C) represents the fluorescence immunostaining of the mucus (green) and DAPI staining of mononuclear cells (blue). The blue arrow indicates the luminal side of the inner mucus surface; Image (D) represents the fluorescent immunostaining of the mucus (green) where the Brightfield filter was applied. The white arrow indicates the inner mucus from the apical membrane side. The red arrow is located in a colonic crypt and indicates the colonic goblet cells. Scale bar: 100 μm in all images.

References

    1. France M.M., Turner J.R. The mucosal barrier at a glance. J. Cell Sci. 2017;130:307–314. doi: 10.1242/jcs.193482.
    1. Vancamelbeke M., Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017;11:821–834. doi: 10.1080/17474124.2017.1343143.
    1. Schroeder B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 2019;7:3–12. doi: 10.1093/gastro/goy052.
    1. Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009;9:799–809. doi: 10.1038/nri2653.
    1. Pelaseyed T., Bergström J.H., Gustafsson J.K., Ermund A., Birchenough G.M.H., Schütte A., Post S., Svensson F., Rodríguez-Piñeiro A.M., Nyström E.E.L., et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 2014;260:8–20. doi: 10.1111/imr.12182.
    1. Allen A., Hutton D.A., Pearson J.P. The MUC2 gene product: A human intestinal mucin. Int. J. Biochem. Cell Biol. 1998;30:797–801. doi: 10.1016/S1357-2725(98)00028-4.
    1. Johansson M.E., Hansson G.C. Mucus and the goblet cell. Dig. Dis. 2013;31:305–309. doi: 10.1159/000354683.
    1. Wlodarska M., Thaiss C.A., Nowarski R., Henao-Mejia J., Zhang J.P., Brown E.M., Frankel G., Levy M., Katz M.N., Philbrick W.M., et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156:1045–1059. doi: 10.1016/j.cell.2014.01.026.
    1. Kim Y.S., Ho S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010;12:319–330. doi: 10.1007/s11894-010-0131-2.
    1. Johansson M.E., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:15064–15069. doi: 10.1073/pnas.0803124105.
    1. Johansson M.E., Sjovall H., Hansson G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2013;10:352–361. doi: 10.1038/nrgastro.2013.35.
    1. Arnold J.W., Klimpel G.R., Niesel D.W. Tumor necrosis factor (TNF alpha) regulates intestinal mucus production during salmonellosis. Cell. Immunol. 1993;151:336–344. doi: 10.1006/cimm.1993.1243.
    1. Merga Y., Campbell B.J., Rhodes J.M. Mucosal barrier, bacteria and inflammatory bowel disease: Possibilities for therapy. Dig. Dis. 2014;32:475–483. doi: 10.1159/000358156.
    1. Van der Sluis M., De Koning B.A.E., De Bruijn A.C.J.M., Velcich A., Meijerink J.P.P., Van Goudoever J.B., Büller H.A., Dekker J., Van Seuningen I., Renes I.B., et al. Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection. Gastroenterology. 2006;131:117–129. doi: 10.1053/j.gastro.2006.04.020.
    1. Chen S.J., Liu X.W., Liu J.P., Yang X.Y., Lu F.G. Ulcerative colitis as a polymicrobial infection characterized by sustained broken mucus barrier. World J. Gastroenterol. 2014;20:9468–9475. doi: 10.3748/wjg.v20.i28.9468.
    1. van der Post S., Jabbar K.S., Birchenough G., Arike L., Akhtar N., Sjovall H., Johansson M.E.V., Hansson G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019;68:2142–2151. doi: 10.1136/gutjnl-2018-317571.
    1. Gouyer V., Dubuquoy L., Robbe-Masselot C., Neut C., Singer E., Plet S., Geboes K., Desreumaux P., Gottrand F., Desseyn J.L. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier. Sci. Rep. 2015;5:9577. doi: 10.1038/srep09577.
    1. Desseyn J.L., Gouyer V., Gottrand F. Biological modeling of mucus to modulate mucus barriers. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;310:G225–G227. doi: 10.1152/ajpgi.00274.2015.
    1. Sun J., Shen X., Li Y., Guo Z., Zhu W., Zuo L., Zhao J., Gu L., Gong J., Li J. Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients. 2016;8:44. doi: 10.3390/nu8010044.
    1. Andersen V., Holmskov U., Sørensen S.B., Jawhara M., Andersen K.W., Bygum A., Hvid L., Grauslund J., Wied J., Glerup H., et al. A Proposal for a Study on Treatment Selection and Lifestyle Recommendations in Chronic Inflammatory Diseases: A Danish Multidisciplinary Collaboration on Prognostic Factors and Personalised Medicine. Nutrients. 2017;9:499. doi: 10.3390/nu9050499.
    1. Christensen R., Heitmann B.L., Andersen K.W., Nielsen O.H., Sorensen S.B., Jawhara M., Bygum A., Hvid L., Grauslund J., Wied J., et al. Impact of red and processed meat and fibre intake on treatment outcomes among patients with chronic inflammatory diseases: Protocol for a prospective cohort study of prognostic factors and personalised medicine. BMJ Open. 2018;8:e018166. doi: 10.1136/bmjopen-2017-018166.
    1. Jowett S.L., Seal C.J., Pearce M.S., Phillips E., Gregory W., Barton J.R., Welfare M.R. Influence of dietary factors on the clinical course of ulcerative colitis: A prospective cohort study. Gut. 2004;53:1479–1484. doi: 10.1136/gut.2003.024828.
    1. Pattison D.J., Symmons D.P., Lunt M., Welch A., Luben R., Bingham S.A., Khaw K.T., Day N.E., Silman A.J. Dietary risk factors for the development of inflammatory polyarthritis: Evidence for a role of high level of red meat consumption. Arthritis Rheum. 2004;50:3804–3812. doi: 10.1002/art.20731.
    1. Magee E.A., Richardson C.J., Hughes R., Cummings J.H. Contribution of dietary protein to sulfide production in the large intestine: An in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 2000;72:1488–1494. doi: 10.1093/ajcn/72.6.1488.
    1. Kushkevych I., Dordevic D., Vitezova M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z.
    1. Ijssennagger N., van der Meer R., van Mil S.W. Sulfide as a Mucus Barrier-Breaker in Inflammatory Bowel Disease? Trends Mol. Med. 2016;22:190–199. doi: 10.1016/j.molmed.2016.01.002.
    1. Bastide N.M., Chenni F., Audebert M., Santarelli R.L., Tache S., Naud N., Baradat M., Jouanin I., Surya R., Hobbs D.A., et al. A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 2015;75:870–879. doi: 10.1158/0008-5472.CAN-14-2554.
    1. Gamage S.M.K., Dissabandara L., Lam A.K., Gopalan V. The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Crit. Rev. Oncol. Hematol. 2018;126:121–128. doi: 10.1016/j.critrevonc.2018.03.025.
    1. Minihane A.M., Vinoy S., Russell W.R., Baka A., Roche H.M., Tuohy K.M., Teeling J.L., Blaak E.E., Fenech M., Vauzour D., et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015;114:999–1012. doi: 10.1017/S0007114515002093.
    1. Seal C.J., Brownlee I.A. Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proc. Nutr. Soc. 2015;74:313–319. doi: 10.1017/S0029665115002104.
    1. Roager H.M., Vogt J.K., Kristensen M., Hansen L.B.S., Ibrugger S., Maerkedahl R.B., Bahl M.I., Lind M.V., Nielsen R.L., Frokiaer H., et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut. 2019;68:83–93. doi: 10.1136/gutjnl-2017-314786.
    1. Suzuki T., Yoshida S., Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 2008;100:297–305. doi: 10.1017/S0007114508888733.
    1. van der Beek C.M., Dejong C.H.C., Troost F.J., Masclee A.A.M., Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev. 2017;75:286–305. doi: 10.1093/nutrit/nuw067.
    1. Wong J.M., de Souza R., Kendall C.W., Emam A., Jenkins D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015.
    1. Jawhara M.S.S.B. Hvem har Gavn af Medicinsk Behandling Med Præparater Rettet Mod TNF-α. [(accessed on 23 January 2020)];Gastroenterol. Best Pract. Nord. 2018 Available online:
    1. e-Boks. [(accessed on 23 January 2020)]; Available online: .
    1. Lewis S.J., Heaton K.W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 1997;32:920–924. doi: 10.3109/00365529709011203.
    1. Ware J., Jr., Kosinski M., Keller S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34:220–233. doi: 10.1097/00005650-199603000-00003.
    1. Eriksen L., Gronbaek M., Helge J.W., Tolstrup J.S., Curtis T. The Danish Health Examination Survey 2007-2008 (DANHES 2007-2008) Scand. J. Public Health. 2011;39:203–211. doi: 10.1177/1403494810393557.
    1. National Food Institute, Technical University of Denmark Danish Food Composition Tables. [(accessed on 14 February 2019)]; Available online: .
    1. Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Harris P.A., Taylor R., Minor B.L., Elliott V., Fernandez M., O’Neal L., McLeod L., Delacqua G., Delacqua F., Kirby J., et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.
    1. Network, O.P.d.E. [(accessed on 24 January 2020)]; Available online: .
    1. Tenekedjiev K.I., Nikolova N.D., Kolev K. Wellcome Trust-Funded Monographs and Book Chapters Applications of Monte Carlo Simulation in Modelling of Biochemical Processes. In: Mode C.J., editor. Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science. InTech; Rijeka, Croatia: 2011.
    1. StataCorp . Stata Statistical Software: Release 15. StataCorp LP; College Station, TX, USA: 2015.
    1. Cohen M., Varki N.M., Jankowski M.D., Gagneux P. Using Unfixed, Frozen Tissues to Study Natural Mucin Distribution. J. Vis. Exp. Jove. 2012 doi: 10.3791/3928.
    1. Johansson M.E.V., Hansson G.C. Preservation of Mucus in Histological Sections, Immunostaining of Mucins in Fixed Tissue, and Localization of Bacteria with FISH. In: McGuckin M.A., Thornton D.J., editors. Mucins: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2012. pp. 229–235.
    1. Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990;56:1919–1925. doi: 10.1128/AEM.56.6.1919-1925.1990.
    1. Jensen H.E., Jensen L.K., Barington K., Pors S.E., Bjarnsholt T., Boye M. Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections. Methods Mol. Biol. (Clifton N. J.) 2015;1247:219–234. doi: 10.1007/978-1-4939-2004-4_17.
    1. : NDP.view2 U12388-01. [(accessed on 4 December 2019)]; Available online: .
    1. Bruun N.H. SF12: Stata Module to Validate sf12 Input and Calculate sf12 Version 2 t Scores. [(accessed on 24 January 2020)];2015 Available online: .
    1. O’Donnell L.J., Virjee J., Heaton K.W. Detection of pseudodiarrhoea by simple clinical assessment of intestinal transit rate. BMJ (Clin. Res. Ed.) 1990;300:439–440. doi: 10.1136/bmj.300.6722.439.
    1. Chan D.S., Lau R., Aune D., Vieira R., Greenwood D.C., Kampman E., Norat T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS ONE. 2011;6:e20456. doi: 10.1371/journal.pone.0020456.
    1. Sasso A., Latella G. Role of Heme Iron in the Association Between Red Meat Consumption and Colorectal Cancer. Nutr. Cancer. 2018;70:1173–1183. doi: 10.1080/01635581.2018.1521441.
    1. Gibson G.R., Macfarlane G.T., Cummings J.H. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34:437–439. doi: 10.1136/gut.34.4.437.
    1. Saunders B.P., Fukumoto M., Halligan S., Jobling C., Moussa M.E., Bartram C.I., Williams C.B. Why is colonoscopy more difficult in women? Gastrointest. Endosc. 1996;43:124–126. doi: 10.1016/S0016-5107(06)80113-6.
    1. Phillips M., Patel A., Meredith P., Will O., Brassett C. Segmental colonic length and mobility. Ann. R. Coll. Surg. Engl. 2015;97:439–444. doi: 10.1308/003588415X14181254790527.
    1. Elderman M., Sovran B., Hugenholtz F., Graversen K., Huijskes M., Houtsma E., Belzer C., Boekschoten M., de Vos P., Dekker J., et al. The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS ONE. 2017;12:e0184274. doi: 10.1371/journal.pone.0184274.
    1. Cummings J.H., Hill M.J., Bone E.S., Branch W.J., Jenkins D.J. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am. J. Clin. Nutr. 1979;32:2094–2101. doi: 10.1093/ajcn/32.10.2094.
    1. Meldrum O.W., Yakubov G.E., Gartaula G., McGuckin M.A., Gidley M.J. Mucoadhesive functionality of cell wall structures from fruits and grains: Electrostatic and polymer network interactions mediated by soluble dietary polysaccharides. Sci. Rep. 2017;7:15794. doi: 10.1038/s41598-017-16090-1.
    1. Bucher P., Gervaz P., Egger J.F., Soravia C., Morel P. Morphologic alterations associated with mechanical bowel preparation before elective colorectal surgery: A randomized trial. Dis. Colon Rectum. 2006;49:109–112. doi: 10.1007/s10350-005-0215-5.
    1. Coskun A., Uzunkoy A., Duzgun S.A., Bozer M., Ozardali I., Vural H. Experimental sodium phosphate and polyethylene glycol induce colonic tissue damage and oxidative stress. BJS (Br. J. Surg.) 2001;88:85–89. doi: 10.1046/j.1365-2168.2001.01608.x.
    1. Atuma C., Strugala V., Allen A., Holm L. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;280:G922–G929. doi: 10.1152/ajpgi.2001.280.5.G922.
    1. Johansson M.E., Larsson J.M., Hansson G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl. 1):4659–4665. doi: 10.1073/pnas.1006451107.
    1. Hasegawa Y., Mark Welch J.L., Rossetti B.J., Borisy G.G. Preservation of three-dimensional spatial structure in the gut microbiome. PLoS ONE. 2017;12:e0188257. doi: 10.1371/journal.pone.0188257.
    1. Zhu J., Ma S., Xiao P., Li L., Yang Y. Meta-analysis on the relationship among fiber of grain and intestinal motility and symptoms. Wei Sheng Yan Jiu J. Hyg. Res. 2015;44:1–7.
    1. James L.R., Brett J.M. Mediators, moderators, and tests for mediation. J. Appl. Psychol. 1984;69:307–321. doi: 10.1037/0021-9010.69.2.307.
    1. MacKinnon D.P., Krull J.L., Lockwood C.M. Equivalence of the mediation, confounding and suppression effect. Prev. Sci. 2000;1:173–181. doi: 10.1023/A:1026595011371.
    1. Paturi G., Butts C.A., Bentley-Hewitt K.L., Hedderley D., Stoklosinski H., Ansell J. Differential effects of probiotics, prebiotics, and synbiotics on gut microbiota and gene expression in rats. J. Funct. Foods. 2015;13:204–213. doi: 10.1016/j.jff.2014.12.034.
    1. Kyrø C., Skeie G., Dragsted L.O., Christensen J., Overvad K., Hallmans G., Johansson I., Lund E., Slimani N., Johnsen N.F., et al. Intake of whole grain in Scandinavia: Intake, sources and compliance with new national recommendations. Scand. J. Public Health. 2012;40:76–84. doi: 10.1177/1403494811421057.
    1. Jawhara M., Sørensen S.B., Heitmann B.L., Andersen V. Biomarkers of Whole-Grain and Cereal-Fiber Intake in Human Studies: A Systematic Review of the Available Evidence and Perspectives. Nutrients. 2019;11:2994. doi: 10.3390/nu11122994.
    1. Cuparencu C., Praticó G., Hemeryck L.Y., Sri Harsha P.S.C., Noerman S., Rombouts C., Xi M., Vanhaecke L., Hanhineva K., Brennan L., et al. Biomarkers of meat and seafood intake: An extensive literature review. Genes Nutr. 2019;14:35. doi: 10.1186/s12263-019-0656-4.

Source: PubMed

3
S'abonner