Focal infrared neural stimulation with high-field functional MRI: A rapid way to map mesoscale brain connectomes

Augix Guohua Xu, Meizhen Qian, Feiyan Tian, Bin Xu, Robert M Friedman, Jianbao Wang, Xuemei Song, Yi Sun, Mykyta M Chernov, Jonathan M Cayce, E Duco Jansen, Anita Mahadevan-Jansen, Xiaotong Zhang, Gang Chen, Anna Wang Roe, Augix Guohua Xu, Meizhen Qian, Feiyan Tian, Bin Xu, Robert M Friedman, Jianbao Wang, Xuemei Song, Yi Sun, Mykyta M Chernov, Jonathan M Cayce, E Duco Jansen, Anita Mahadevan-Jansen, Xiaotong Zhang, Gang Chen, Anna Wang Roe

Abstract

We have developed a way to map brain-wide networks using focal pulsed infrared neural stimulation in ultrahigh-field magnetic resonance imaging (MRI). The patterns of connections revealed are similar to those of connections previously mapped with anatomical tract tracing methods. These include connections between cortex and subcortical locations and long-range cortico-cortical connections. Studies of local cortical connections reveal columnar-sized laminar activation, consistent with feed-forward and feedback projection signatures. This method is broadly applicable and can be applied to multiple areas of the brain in different species and across different MRI platforms. Systematic point-by-point application of this method may lead to fundamental advances in our understanding of brain connectomes.

Figures

Fig. 1. Global connections revealed by INS…
Fig. 1. Global connections revealed by INS stimulation in cat visual cortex.
(A) Stimulation paradigm. Each block of INS comprises 20 trials of pulse trains at a single energy. Train duration, 0.5 s; intertrain interval, 35.5 s; pulses, 250 μs; 200 Hz; 0.1 to 1.0 J/cm2 per pulse. (B) Connections of cat area 17/18. Red arrows indicate cat visual projections from area 17 [adapted from (49)]. The color bar shows T statistics for significant voxels in (C) and (D), thresholded at P < 0.01. (C to E) Data from cat #4. (C) Thalamic activations. Left: Stimulation of area 17/18 at 0.3 J/cm2 [red asterisk in (D)] reveals ipsilateral LGN activation. Right: At 0.7 J/cm2, stimulation produces larger ipsilateral activation in LGN and pulvinar (LGN/Pul). In addition, strong activations are seen in contralateral pulvinar and lateral posterior nucleus (LP). (D) Cortical activations in three slices (dorsal, intermediate, and ventral). The red asterisk denotes the stimulation of area 17/18 at 0.7 J/cm2. Significant voxels seen in areas 17, 18, and 19; AMLS; anterior ectosylvian area (AES); and cingulate visual area (CVA). (E) Intensity dependence (average of 20 trials; error bars, SEM). Top: Time courses (left) and amplitudes (right) at the laser tip site in (D). The yellow bar indicates INS onset. Bottom: Response amplitudes at connected ipsilateral 18 and contralateral 17/18 sites in (D).
Fig. 2. All slices of voxels activated…
Fig. 2. All slices of voxels activated by laser stimulation of the area 17/18 border (0.7 J/cm2).
Significant voxels (P < 0.01, FDR of 20%) overlie locations with known anatomical connections to laser stimulation site in area 17/18. These include LGN; LP/pulvinar; areas 17, 18, 19, 20, and 21; and sylvian areas (AMLS and PMLS). Polysynaptic areas include contralateral LP/pulvinar, AES, CVA, and areas 4, 5, and 7 (see the main text). Note that LGN, which has very strong connections with area 17/18, contains some of the most significant voxels. The color bar shows T statistics for significant voxels. See Fig. 1A for the expanded forms of the abbreviations.
Fig. 3. Local connections revealed by INS…
Fig. 3. Local connections revealed by INS stimulation in squirrel monkey somatosensory cortex.
(A) Somatotopy in areas 3b and 1 (38). (B) Stimulation paradigm. ISI, inter-stimulus interval. (C) A 400-μm optic fiber on top of an artificial dura in an optical chamber over SI. Surface coil, 3 cm. Dark vessel, central sulcus. (D) Two planes of MRI imaging, with the chamber seen on top of the cortex. Scale bar, 1 cm. (E) Schematic of digit connectivity in SI (33). (F) Schematic of feed-forward and feedback inter-areal connectivity in SI (35). (G) Cortical responses to stimulation at D3. Slice in tangential plane. The red dot indicates the optical fiber tip in area 3b. See Fig. 4 (A and C) for determination of areal borders (dashed white lines). CS, central sulcus; M, medial; P, posterior. Scale bar, 5 mm (monkey #2). (H) Cortical response to stimulation of area 2 (red arrowhead, fiber tip; dark spot, signal dropout). Slice in orthogonal plane. Green arrowheads indicate feed-forward activations. White and blue arrowheads denote feedback. See Fig. 4 (B and D) for determination of areal boundaries. The white rectangle indicates the silicone plug in the chamber. D, dorsal; LS, lateral sulcus. Scale bar, 5 mm. The color bar shows T statistics for significant voxels in (G) and (H) (monkey #3). (Photo credit: Gang Chen and Anna Wang Roe.)
Fig. 4. Determination of areal boundaries via…
Fig. 4. Determination of areal boundaries via optical imaging
(A) Monkey #2 (Fig. 3G, tangential case) and (B) monkey #3 (Fig. 3H, orthogonal case). Left: Optical chamber. Blue boxes denote imaged fields of view. Right: Optical images to stimulation of digit tips [cf. (42)]. White arrows in D3 of (A) correspond to those in (C) and (E). Field of view for D1 and D2 images is shifted relative to that for D3 and D4. (C and D) Summary of digit tip topography from (A) and (B). (C) Arrows indicate corresponding locations with (E). The red dot indicates the laser stimulation site. White dotted lines denote the borders between areas. (D) Colored arrowheads indicate corresponding locations with (F). The red arrowhead denotes the laser stimulation site. The horizontal purple line indicates the approximate location of slice in (F). Green arrowheads denote the feed-forward projections in (F). White (area 3b) and blue (area 1) arrowheads indicate feedback projections in (F). (A and C) Monkey #2. (B and D) Monkey #3. (E and F) Compare with (C) and (D) for alignment of optical imaging and fMRI maps. (E) Same as Fig. 3G. (F) Same as Fig. 3H. These figures are shown to easily see the correspondence between optical and MRI images. (Photo credit: Robert M. Friedman and Anna Wang Roe.)
Fig. 5. Intensity dependence.
Fig. 5. Intensity dependence.
(A) Time course of MR signal change at different intensities of INS stimulation (average of 13 trials). The same case as Figs. 3G and 4 (A, C, and E) (monkey #2). (B) Each dot denotes the peak amplitude of MR signal of individual trials (n = 13). Error bars, SEM. The dashed line represents the regression line. (C and D) Local activation at high [(C) 0.50 J/cm2] and low [(D) 0.29 J/cm2] intensities. The same case as in Figs. 3H and 4 (B and D) (monkey #3). Stimulation in area 2 (optical fiber, red arrow). Third panel: Same as in Fig. 3H. Adjacent 1.5-mm-thick slices from lateral (left) to medial (right). Central sulcus [seen in the two rightmost panels of (C)] aided in demarcation of area 3b (white arrowheads) and area 1 (blue arrowheads). (D) Same as (C) except for lower INS intensity. Scale bar, 5 mm. The color bar shows T statistics for significant voxels in (C) and (D).
Fig. 6. Reliability of activation.
Fig. 6. Reliability of activation.
Panels A, B, C and D represent adjacent slices. Top row: Original panels (Fig. 5 C, n = 13 trials) showing feed-forward (green arrowheads) and feedback (white and blue arrowheads) connections from point stimulation in area 2 (red arrow). Middle row: Sum of even trials (n = 6). Bottom row: Sum of odd trials (n = 7). Since half as many trials will have lower statistical power, we used P < 0.0005 for half-trial images (middle and bottom rows) instead of the P < 0.0001 used for all trials (top row). Comparison of the half-trials reveals that the images are largely similar (from monkey #3).

References

    1. Vincent J. L., Patel G. H., Fox M. D., Snyder A. Z., Baker J. T., Van Essen D. C., Zempel J. M., Snyder L. H., Corbetta M., Raichle M. E., Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).
    1. Tolias A. S., Sultan F., Augath M., Oeltermann A., Tehovnik E. J., Schiller P. H., Logothetis N. K., Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48, 901–911 (2005).
    1. Matsui T., Tamura K., Koyano K. W., Takeuchi D., Adachi Y., Osada T., Miyashita Y., Direct comparison of spontaneous functional connectivity and effective connectivity measured by intracortical microstimulation: An fMRI study in macaque monkeys. Cereb. Cortex 21, 2348–2356 (2011).
    1. Oya H., Howard M. A., Magnotta V. A., Kruger A., Griffiths T. D., Lemieux L., Carmichael D. W., Petkov C. I., Kawasaki H., Kovach C. K., Sutterer M. J., Adolphs R., Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI. J. Neurosci. Methods 277, 101–112 (2017).
    1. Leong A. T. L., Dong C. M., Gao P. P., Chan R. W., To A., Sanes D. H., Wu E. X., Optogenetic auditory fMRI reveals the effects of visual cortical inputs on auditory midbrain response. Sci. Rep. 8, 8736 (2018).
    1. Gerits A., Farivar R., Rosen B. R., Wald L. L., Boyden E. S., Vanduffel W., Optogenetically induced behavioral and functional network changes in primates. Curr. Biol. 22, 1722–1726 (2012).
    1. Ohayon S., Grimaldi P., Schweers N., Tsao D. Y., Saccade modulation by optical and electrical stimulation in the macaque frontal eye field. J. Neurosci. 33, 16684–16697 (2013).
    1. Cayce J. M., Friedman R. M., Jansen E. D., Mahavaden-Jansen A., Roe A. W., Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. Neuroimage 57, 155–166 (2011).
    1. Cayce J. M., Friedman R. M., Chen G., Jansen E. D., Mahadevan-Jansen A., Roe A. W., Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 84, 181–190 (2014).
    1. Lothet E. H., Shaw K. M., Lu H., Zhuo J., Wang Y. T., Gu S., Stolz D. B., Jansen E. D., Horn C. C., Chiel H. J., Jenkins M. W., Selective inhibition of small-diameter axons using infrared light. Sci. Rep. 7, 3275 (2017).
    1. Young H. K., Tan X., Xia N., Richter C.-P., Target structures for cochlear infrared neural stimulation. Neurophotonics 2, 025002 (2015).
    1. Wells J., Kao C., Jansen E. D., Konrad P., Mahadevan-Jansen A., Application of infrared light for in vivo neural stimulation. J. Biomed. Opt. 10, 064003 (2005).
    1. Shapiro M. G., Homma K., Villarreal S., Richter C.-P., Bezanilla F., Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736 (2012).
    1. Liljemalm R., Nyberg T., von Holst H., Heating during infrared neural stimulation. Lasers Surg. Med. 45, 469–481 (2013).
    1. Thompson A. C., Wade S. A., Pawsey N. C., Stoddart P. R., Infrared neural stimulation: Influence of stimulation site spacing and repetition rates on heating. IEEE Trans. Biomed. Eng. 60, 3534–3541 (2013).
    1. Richter C.-P., Tan X., Photons and neurons. Hear. Res. 311, 72–88 (2014).
    1. Chernov M., Roe A. W., Infrared neural stimulation: A new stimulation tool for central nervous system applications. Neurophotonics 1, 011011 (2014).
    1. Duke A. R., Jenkins M. W., Lu H., McManus J. M., Chiel H. J., Jansen E. D., Transient and selective suppression of neural activity with infrared light. Sci. Rep. 3, 2600 (2013).
    1. Lothet E. H., Kilgore K. L., Bhadra N., Bhadra N., Vrabec T., Wang Y. T., Jansen E. D., Jenkins M. W., Chiel H. J., Alternating current and infrared produce an onset-free reversible nerve block. Neurophotonics 1, 011010 (2014).
    1. Thompson A. C., Wade S. A., Cadusch P. J., Brown W. G. A., Stoddart P. R., Modeling of the temporal effects of heating during infrared neural stimulation. J. Biomed. Opt. 18, 035004 (2013).
    1. Shin Y., Kwon H.-S., Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy. Phys. Med. Biol. 61, 2265–2282 (2016).
    1. Yizhar O., Fenno L. E., Davidson T. J., Mogri M., Deisseroth K., Optogenetics in neural systems. Neuron 71, 9–34 (2011).
    1. Chernov M. M., Chen G., Roe A. W., Histological assessment of thermal damage in the brain following infrared neural stimulation. Brain Stimul. 7, 476–482 (2014).
    1. Wells J., Konrad P., Kao C., Jansen E. D., Mahadevan-Jansen A., Pulsed laser versus electrical energy for peripheral nerve stimulation. J. Neurosci. Methods 163, 326–337 (2007).
    1. Tusa R. J., Palmer L. A., Rosenquist A. C., The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177, 213–235 (1978).
    1. Tusa R. J., Rosenquist A. C., Palmer L. A., Retinotopic organization of areas 18 and 19 in the cat. J. Comp. Neurol. 185, 657–678 (1979).
    1. Palmer L. A., Rosenquist A. C., Tusa R. J., The retinotopic organization of lateral suprasylvian visual areas in the cat. J. Comp. Neurol. 177, 237–256 (1978).
    1. Jezzard P., Rauschecker J. P., Malonek D., An in vivo model for functional MRI in cat visual cortex. Magn. Reson. Med. 38, 699–705 (1997).
    1. Stolzberg D., Wong C., Butler B. E., Lomber S. G., Catlas: An magnetic resonance imaging-based three-dimensional cortical atlas and tissue probability maps for the domestic cat (Felis catus). J. Comp. Neurol. 525, 3190–3206 (2017).
    1. Olavarria J. F., Non-mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex. J. Comp. Neurol. 366, 643–655 (1996).
    1. Segraves M., Rosenquist A., The distribution of the cells of origin of callosal projections in cat visual cortex. J. Neurosci. 2, 1079–1089 (1982).
    1. Olson C. R., Graybiel A. M., Ectosylvian visual area of the cat: Location, retinotopic organization, and connections. J. Comp. Neurol. 261, 277–294 (1987).
    1. Rauschecker J. P., Korte M., Auditory compensation for early blindness in cat cerebral cortex. J. Neurosci. 13, 4538–4548 (1993).
    1. Raczkowski D., Rosenquist A. C., Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J. Neurosci. 3, 1912–1942 (1983).
    1. Vanduffel W., Vandenbussche E., Singer W., Orban G. A., Metabolic mapping of visual areas in the behaving cat: A[14C]2-deoxyglucose study. J. Comp. Neurol. 354, 161–180 (1995).
    1. Olson C. R., Lawler K., Cortical and subcortical afferent connections of a posterior division of feline area 7 (Area 7p). J. Comp. Neurol. 259, 13–30 (1987).
    1. Orem J., Schlag J., Direct projections from cat frontal eye field to internal medullary lamina of the thalamus. Exp. Neurol. 33, 509–517 (1971).
    1. Meredith M. A., The frontal eye fields target multisensory neurons in cat superior colliculus. Exp. Brain Res. 128, 460–470 (1999).
    1. Wang Z., Chen L. M., Négyessy L., Friedman R. M., Mishra A., Gore J. C., Roe A. W., The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 78, 1116–1126 (2013).
    1. Négyessy L., Pálfi E., Ashaber M., Palmer C., Jákli B., Friedman R. M., Chen L. M., Roe A. W., Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: Neuroanatomical evidence. J. Comp. Neurol. 521, 2798–2817 (2013).
    1. Sur M., Nelson R. J., Kaas J. H., Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: Comparisons with other primates. J. Comp. Neurol. 211, 177–192 (1982).
    1. Shanks M. F., Pearson R. C., Powell T. P., The ipsilateral cortico-cortical connexions between the cytoarchitectonic subdivisions of the primary somatic sensory cortex in the monkey. Brain Res. 356, 67–88 (1985).
    1. Felleman D. J., Van Essen D. C., Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
    1. Chen L. M., Turner G. H., Friedman R. M., Zhang N., Gore J. C., Roe A. W., Avison M. J., High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging. J. Neurosci. 27, 9181–9191 (2007).
    1. Cox R. W., AFNI: What a long strange trip it’s been. Neuroimage 62, 743–747 (2012).
    1. Schlegel F., Schroeter A., Rudin M., The hemodynamic response to somatosensory stimulation in mice depends on the anesthetic used: Implications on analysis of mouse fMRI data. Neuroimage 116, 40–49 (2015).
    1. Chen L. M., Friedman R. M., Ramsden B. M., LaMotte R. H., Roe A. W., Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J. Neurophysiol. 86, 3011–3029 (2001).
    1. Lecoeur J., Wang F., Chen L. M., Li R., Avison M. J., Dawant B. M., Automated longitudinal registration of high resolution structural MRI brain sub-volumes in non-human primates. J. Neurosci. Methods 202, 99–108 (2011).
    1. Huang J. Y., Wang C., Dreher B., The effects of reversible inactivation of postero-temporal visual cortex on neuronal activities in cat’s area 17. Brain Res. 1138, 111–128 (2007).

Source: PubMed

3
S'abonner