Music and early language acquisition

Anthony Brandt, Molly Gebrian, L Robert Slevc, Anthony Brandt, Molly Gebrian, L Robert Slevc

Abstract

Language is typically viewed as fundamental to human intelligence. Music, while recognized as a human universal, is often treated as an ancillary ability - one dependent on or derivative of language. In contrast, we argue that it is more productive from a developmental perspective to describe spoken language as a special type of music. A review of existing studies presents a compelling case that musical hearing and ability is essential to language acquisition. In addition, we challenge the prevailing view that music cognition matures more slowly than language and is more difficult; instead, we argue that music learning matches the speed and effort of language acquisition. We conclude that music merits a central place in our understanding of human development.

Keywords: childhood development; definition of music; emergent modularity; language; language acquisition; music; music cognition; musical development.

Figures

Figure 1
Figure 1
Blue print denotes parallel development. Purple print denotes related, but not analogous development. Black print denotes language-only development. See main text for citations not listed here. (1) Six-month olds can discriminate changes in Western and Javanese scales, can discriminate simple and complex meters, and can discriminate the phonemes of all languages. (2) Nine-month olds can detect pitch or timing changes more easily in strong metrical structures and more easily process duple meter (more common) than triple meter (less common; Bergeson and Trehub, 2006). (3) Twelve-month olds can better detect mistuned notes in Western scales than in Javanese scales and have more difficulty detecting changes in complex than simple meters. (4) Between 6 and 8 months, infants can discriminate consonant from dissonant intervals, but have difficulty discriminating between different consonant intervals (Schellenberg and Trainor, 1996). (5) Between 6 and 8 months, can no longer discriminate non-native vowel contrasts, but can still discriminate non-native consonant contrasts. (6) Trehub and Thorpe (1989). (7) At 7.5–8 months, English speaking infants show a bias for stress-initial words and are sensitive to prosodic and frequency cues to word order.
Figure 2
Figure 2
Blue print denotes parallel development. Purple print denotes related, but not analogous development. See main text for references. (1) Two-year olds can repeat brief, sung phrases with identifiable rhythm and contour. (2) Eighteen-month olds produce two word utterances; 2 year olds tend to eliminate function words, but not content words. (3) Two-year olds show basic knowledge of word order constraints. (4) Three-year olds have some knowledge of key membership and harmony and sing “outline songs.” (5) Four to six-year olds show knowledge of scale and key membership and detect changes more easily in diatonic melodies than in non-diatonic ones. Five-year olds show a typical electrophysiological response to unexpected chords (the early right anterior negativity, or ERAN), but do not detect a melodic change that implies a change in harmony. (6) At 5 years, processing of function words depends on semantic context and brain activation is not function-specific for semantic v. syntactic processing (unlike adults). (7) Six-year olds are able to speak in complete, well-formed sentences. (8) Seven-year olds have a knowledge of Western tonal structure comparable to adults’ and can detect melodic changes that imply a change in harmony. (9) Only after 10 years of age do children show adult-like electrophysiological responses to syntactic errors (Hahne et al., 2004).

References

    1. Anvari S. H., Trainor L. J., Woodside J., Levy B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. J. Exp. Child. Psychol. 83, 111–13010.1016/S0022-0965(02)00124-8
    1. Aretz I. (1967). The polyphonic chant in South America. Int. Council Tradition. Music 19, 49–5310.2307/942185
    1. Ayotte J., Peretz I., Hyde K. (2002). Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 125, 238–25110.1093/brain/awf028
    1. Basso A., Capitani E. (1985). Spared musical abilities in a conductor with global aphasia and ideomotor apraxia. J. Neurol. Sci. 48, 407–412
    1. Bates E., Thal D., Trauner D., Fenson J., Aram D., Eisele J., Nass R. (1997). From first words to grammar in children with focal brain injury. Dev. Neuropsychol. 13, 275–34310.1080/87565649709540682
    1. Belin P., Zatorre R. J., Lafaille P., Ahad P., Pike B. (2000). Voice-selective areas in human auditory cortex. Nature 403, 309–31210.1038/35002078
    1. Benasich A. A., Tallal P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behav. Brain Res. 136, 31–4910.1016/S0166-4328(02)00098-0
    1. Bergeson T. R., Trehub S. E. (2006). Infants’ perception of rhythmic patterns. Music Percept. 23, 345–36010.1525/mp.2006.23.4.345
    1. Bernstein L. (1976). The Unanswered Question: Six Talks at Harvard. Cambridge, MA: Harvard University Press
    1. Besson M., Chobert J., Marie C. (2011). Transfer of training between music and speech: common processing, attention, and memory. Front. Psychol. 2:94.10.3389/fpsyg.2011.00094
    1. Best C. T., McRoberts G. W., Sithole N. M. (1988). Examination of the perceptual re-organization for speech contrasts: Zulu click discrimination by English-speaking adults and infants. J. Exp. Psychol. Hum. Percept. Perform. 14, 345–36010.1037/0096-1523.14.3.345
    1. Bidelman G. M., Krishnan A. (2010). Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Res. 1355, 112–12510.1016/j.brainres.2010.07.100
    1. Bidelman G. M., Krishnan A., Gandour J. T. (2011). Enhanced brainstem encoding predicts musicians’ perceptual advantages with pitch. Eur. J. Neurosci. 33, 530–53810.1111/j.1460-9568.2010.07527.x
    1. Bigand E., Poulin-Charronnat B. (2006). Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition 100, 100–13010.1016/j.cognition.2005.11.007
    1. Birnholz J., Benacerraf B. (1983). The development of human fetal hearing. Science 222, 516–51810.1126/science.6623091
    1. Blasi A., Mercure E., Lloyd-Fox S., Thomson A., Brammer M., Sauter D., Deeley Q., Barker G. J., Renvall V., Deoni S., Gasston D., Williams S. C. R., Johnson M., Simmons A., Murphy D. G. M. (2011). Early specialization for voice and emotion processing in the infant brain. Curr. Biol. 21, 1220–122410.1016/j.cub.2011.06.009
    1. Brauer J., Friederici A. D. (2007). Functional neural networks of semantic and syntactic processes in the developing brain. J. Cogn. Neurosci. 19, 1609–162310.1162/jocn.2007.19.10.1609
    1. Brown S. (1999). “The ‘musilanguage’ model of music evolution,” in The Origins of Music, eds Wallin N. L., Merker B., Brown S. (Cambridge: The MIT Press; ), 271–301
    1. Bryant G. A., Barrett H. C. (2007). Recognizing intentions in infant-directed speech: evidence for universals. Psychol. Sci. 18, 746–75110.1111/j.1467-9280.2007.01970.x
    1. Callan D. E., Tsytsarev V., Hanakawa T., Callan A. M., Katsuhara M., Fukuyama H., Turner R. (2006). Song and speech: brain regions involved with perception and covert production. Neuroimage 31, 1327–134210.1016/j.neuroimage.2006.01.036
    1. Carreiras M., Lopez J., Rivero F., Corina D. (2005). Linguistic perception: neural processing of a whistled language. Nature 433, 31–3210.1038/433031a
    1. Cheng Y., Lee S.-Y., Chen H.-Y., Wang P.-Y., Decety J. (2012). Voice and emotion processing in the human neonatal brain. J. Cogn. Neurosci. 24, 1411–141910.1162/jocn_a_00214
    1. Cheour M., Ceponiene R., Lehtokoski A., Luuk A., Allik J., Alho K., Näätänen R. (1998). Development of language-specific phoneme representations in the infant brain. Nat. Neurosci. 1, 351–35310.1038/1561
    1. Chobert J., Marie C., François C., Schön D., Besson M. (2011). Enhanced passive and active processing of syllables in musician children. J. Cogn. Neurosci. 23, 3874–388710.1162/jocn_a_00088
    1. Chomsky N. (1980). Rules and Representations. New York, NY: Columbia University Press
    1. Christophe A., Dupoux E., Bertoncini J., Mehler J. (1994). Do infants perceive word boundaries? An empirical study of the bootstrapping of lexical acquisition. J. Acoust. Soc. Am. 95, 1570–158010.1121/1.408544
    1. Cohen D. E. (2001). The imperfect in search of perfection. Music Theory Spectrum 23, 139–16910.1525/mts.2001.23.2.139
    1. Conway C. M., Christiansen M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. J. Exp. Psychol. Learn Mem. Cogn. 31, 24–3910.1037/0278-7393.31.1.24
    1. Conway C. M., Pisoni D. B., Anaya E. M., Karpicke J., Henning S. C. (2011). Implicit sequence learning in deaf children with cochlear implants. Dev. Sci. 14, 69–8210.1111/j.1467-7687.2010.00960.x
    1. Conway C. M., Pisoni D. B., Kronenberger W. G. (2009). The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Curr. Dir. Psychol. Sci. 18, 275–27910.1111/j.1467-8721.2009.01651.x
    1. Corrigall K. A., Trainor L. J. (2009). Effects of musical training on key and harmony perception. Ann. N. Y. Acad. Sci. 1169, 164–16810.1111/j.1749-6632.2009.04769.x
    1. Corriveau K., Pasquini E., Goswami U. (2007). Basic auditory processing skills and specific language impairment: a new look at an old hypothesis. J. Speech Lang. Hear. Res. 50, 647–66610.1044/1092-4388(2007/046)
    1. Costa-Giomi E. (2003). Young children’s harmonic perception. Ann. N. Y. Acad. Sci. 999, 477–48410.1196/annals.1284.058
    1. Cross I. (2005). “Music and meaning, ambiguity and evolution,” in Musical Communication, eds Miell D., MacDonald R., Hargreaves D. (Oxford: Oxford University Press; ), 27–43
    1. Cross I. (2012). “Music as a social and cognitive process,” in Language and Music as Cognitive Systems, eds Rebuschat P., Rohrmeier M., Hawkins J. A., Cross I. (Oxford: Oxford University Press; ), 315–328
    1. Cross I., Morley I. (2008). “The evolution of music: theories, definitions and the nature of the evidence,” in Communicative Musicality, eds Malloch S. N., Trevarthen C. (Oxford: Oxford University Press; ), 61–82
    1. Cutler A., Norris D. (1988). The role of strong syllables in segmentation for lexical access. J. Exp. Psychol. Hum. Percept. Perform. 14, 113–12110.1037/0096-1523.14.1.113
    1. Dalla Bella S., Peretz I., Rousseau L., Gosselin N. (2001). A developmental study of the affective value of tempo and mode in music. Cognition 80, B1–B1010.1016/S0010-0277(00)00152-9
    1. Davidson L. (1994). “Song singing by young and old: a developmental approach to music,” in Musical Perceptions, eds Aiello R., Sloboda J. (New York: Oxford University Press; ), 99–130
    1. Deacon T. W. (1997). The Symbolic Species: The Coevolution of Language and the Brain. New York, NY: W. W. Norton and Company, Inc
    1. DeCasper J., Spence M. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behav. Dev. 9, 133–15010.1016/S0163-6383(86)80135-7
    1. Dehaene-Lambertz G. (2000). Cerebral specialization for speech and non-speech stimuli in infants. J. Cogn. Neurosci. 12, 449–46010.1162/089892900562264
    1. Dehaene-Lambertz G., Dehaene S. (1994). Speed and cerebral correlates of syllable discrimination in infants. Nature 370, 1–410.1038/370292a0
    1. Dehaene-Lambertz G., Dehaene S., Hertz-Pannier L. (2002). Functional neuroimaging of speech perception in infants. Science 298, 2013–201510.1126/science.1077066
    1. Dehaene-Lambertz G., Montavont A., Jobert A., Allirol L., Dubois J., Hertz-Pannier L., Dehaene S. (2010). Language or music, mother or Mozart? Structural and environmental influences on infants’ language networks. Brain Lang. 114, 53–6510.1016/j.bandl.2009.09.003
    1. Delogu F., Lampis G., Belardinelli M. O. (2010). From melody to lexical tone: musical ability enhances specific aspects of foreign language perception. Eur. J. Cogn. Psychol. 22, 46–6110.1080/09541440802708136
    1. Deutsch D., Henthorn T., Lapidis R. (2011). Illusory transformation from speech to song. J. Acoust. Soc. Am. 129, 2245–225210.1121/1.3562174
    1. Dowling W. J. (1999). “The development of music perception and cognition,” in The Psychology of Music, 2nd Edn, ed. Deutsch D. (London: Academic Press; ), 603–625
    1. Durston S., Davidson M. C., Tottenham N., Galvan A., Spicer J., Fossella J. A., Casey B. J. (2006). A shift from diffuse to focal cortical activity with development. Dev. Sci. 9, 1–810.1111/j.1467-7687.2005.00458.x
    1. Eimas P., Siqueland E., Jusczyk P., Vigorito J. (1971). Speech perception in infants. Science 171, 202–20610.1126/science.171.3968.303
    1. Eitan Z., Timmers R. (2010). Beethoven’s last piano sonata and those who follow crocodiles: cross-domain mappings of auditory pitch in a musical context. Cognition 114, 405–42210.1016/j.cognition.2009.10.013
    1. Evans J., Saffran J., Robe-Torres K. (2009). Statistical learning in children with specific language impairment. J. Speech Lang. Hear. Res. 52, 321–33510.1044/1092-4388(2009/07-0189)
    1. Everett D. L. (1985). “Syllable weight, sloppy phonemes, and channels in Pirahã discourse,” in Proceedings of the Eleventh Annual Meeting of the Berkeley Linguistics Society, Berkeley, 408–416
    1. Falk D. (2004). Prelinguistic evolution in early hominins: whence motherese? Behav. Brain Sci. 27, 491–503; discussion 503–583.10.1017/S0140525X04250105
    1. Fay L. E. (1980). Shostakovich versus Volkov: whose testimony? Russ. Rev. 39, 484–49310.2307/128813
    1. Fernald A. (1985). Four-month-old infants prefer to listen to motherese. Infant Behav. Dev. 8, 181–19510.1016/S0163-6383(85)80005-9
    1. Fernald A. (1989). Intonation and communicative intent in mothers’ speech to infants: is the melody the message? Child Dev. 60, 1497–151010.2307/1130938
    1. Fernald A. (1992). “Human maternal vocalizations to infants as biologically relevant signals: an evolutionary perspective,” in The Adapted Mind: Evolutionary Psychology and the Generation of Culture, eds Barkow J. H., Cosmides L., Tooby J. (New York, NY: Oxford University Press; ), 391–428
    1. Fernald A., Kuhl P. (1987). Acoustic determinants of infant preference for motherese speech. Infant Behav. Dev. 10, 279–29310.1016/0163-6383(87)90017-8
    1. Forgeard M., Schlaug G., Norton A., Rosam C., Iyengar U., Winner E. (2008). The relation between music and phonological processing in normal-reading children and children with dyslexia. Music Percept. 25, 383–39010.1525/mp.2008.25.4.383
    1. Frances R., Lhermitte F., Verdy M. (1973). Le deficit musical des aphasiques. Int. Rev. Appl. Psychol. 22, 117–13510.1111/j.1464-0597.1973.tb00392.x
    1. François C., Chobert J., Besson M., Schön D. (in press). Music training for the development of speech segmentation. Cereb. Cortex 1–610.1093/cercor/bhs180
    1. Friederici A. D. (1983). Children’s sensitivity to function words during sentence comprehension. Linguistics 21, 717–73910.1515/ling.1983.21.5.717
    1. Friederici A. D. (2006). The neural basis of language development and its impairment. Neuron 52, 941–95210.1016/j.neuron.2006.12.002
    1. Friederici A. D., Friedrich M., Christophe A. (2007). Brain responses in 4-month-old infants are already language specific. Curr. Biol. 17, 1208–121110.1016/j.cub.2007.06.011
    1. Friedrich M., Weber C., Friederici A. D. (2004). Electrophysiological evidence for delayed mismatch response in infants at-risk for specific language impairment. Psychophysiology 41, 772–78210.1111/j.1469-8986.2004.00202.x
    1. Fritz T., Jentschke S., Gosselin N., Sammler D., Peretz I., Turner R., Friederici A. D., Koelsch S. (2009). Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–57610.1016/j.cub.2009.02.058
    1. Gaab N., Gabrieli J. D. E., Deutsch G. K., Tallal P., Temple E. (2007). Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: an fMRI study. Restor. Neurol. Neurosci. 25, 295–310
    1. Gerhardt K. J., Abrams R. M. (2000). Fetal exposures to sound and vibroacoustic stimulation. J. Perinatol. 20(8 Pt 2), S21–S3010.1038/sj.jp.7200300
    1. Gerken L., Landau B., Remez R. (1990). Function morphemes in young children’s speech perception and production. Dev. Psychol. 26, 204–21610.1037/0012-1649.26.2.204
    1. Gerry D., Unrau A., Trainor L. J. (2012). Active music classes in infancy enhance musical, communicative and social development. Dev. Sci. 15, 398–40710.1111/j.1467-7687.2012.01142.x
    1. Gervain J., Mehler J. (2010). Speech perception and language acquisition in the first year of life. Annu. Rev. Psychol. 61, 191–21810.1146/annurev.psych.093008.100408
    1. Gervain J., Nespor M., Mazuka R., Horie R., Mehler J. (2008). Bootstrapping word order in prelexical infants: a Japanese-Italian cross-linguistic study. Cogn. Psychol. 57, 56–7410.1016/j.cogpsych.2007.12.001
    1. Gleick J. (2011). The Information: A History, a Theory, a Flood. New York, NY: Pantheon
    1. Gluck C. W. R. V. G. (1992/1752). Orfeo ed Euridice. Mineola, NY: Dover
    1. Goswami U., Thomson J., Richardson U., Stainthorp R., Hughes D., Rosen S., Scott S. K. (2002). Amplitude envelope onsets and developmental dyslexia: a new hypothesis. Proc. Natl. Acad. Sci. U.S.A. 99, 10911–1091610.1073/pnas.122368599
    1. Gould S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: The Belknap Press
    1. Graven S. N., Browne J. V. (2008). Auditory development in the fetus and infant. Newborn Infant. Nurs. Rev. 8, 187–19310.1053/j.nainr.2008.10.007
    1. Griffiths T. D., Johnsrude I., Dean J. L., Green G. G. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport 10, 3825–383010.1097/00001756-199912160-00019
    1. Grossmann T., Oberecker R., Koch S. P., Friederici A. D. (2010). The developmental origins of voice processing in the human brain. Neuron 65, 852–85810.1016/j.neuron.2010.03.001
    1. Hahne A., Eckstein K., Friederici A. D. (2004). Brain signatures of syntactic and semantic processes during children’s language development. J. Cogn. Neurosci. 16, 1302–131810.1162/0898929041920504
    1. Hall D. (1991). Musical Acoustics, 2nd Edn Pacific Grove, CA: Brooks/Cole Publishers
    1. Hämäläinen J. A., Salminen H. K., Leppänen P. H. (in press). Basic auditory processing deficits in dyslexia: systematic review of the behavioral and event-related potential/field evidence. J. Learn Disabil.
    1. Hannon E. E. (2010). “Musical enculturation: How young listeners construct musical knowledge through perceptual experience,” in Neoconstructivism: The New Science of Cognitive Development, ed. Johnson S. P. (New York, NY: Oxford University Press; ), 132–158
    1. Hannon E. E., Trehub S. E. (2005a). Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–5510.1111/j.0956-7976.2005.00779.x
    1. Hannon E. E., Trehub S. E. (2005b). Tuning in to musical rhythms: infants learn more readily than adults. Proc. Natl. Acad. Sci. U.S.A. 102, 12639–1264310.1073/pnas.0504254102
    1. Hargreaves D. J. (1996). “The development of artistic and musical competence,” in Musical Beginnings, eds Deliege I., Sloboda J. (Oxford: Oxford University Press; ), 145–170
    1. Harwood D. (1976). Universals in music: a perspective from cognitive psychology. Ethnomusicology 20, 521–53310.2307/851047
    1. Hickok G., Poeppel D. (2007). The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–40210.1038/nrn2113
    1. Hochmann J. R., Endress A. D., Mehler J. (2010). Word frequency as a cue for identifying function words in infancy. Cognition 115, 444–45710.1016/j.cognition.2010.03.006
    1. Höhle B., Weissenborn J., Schmitz M., Ischebeck A. (2001). “Discovering word order regularities: the role of prosodic information for early parameter setting,” in Approaches to Bootstrapping: Phonological, Lexical, Syntactic and Neurophysiological Aspects of Early Language Acquisition, eds Weissenborn J., Höhle B. (Amsterdam: John Benjamins Publishing Company; ), 249–265
    1. Howard D. M., Angus J. A., Welch G. F. (1994). Singing pitching accuracy from years 3 to 6 in a primary school. Proc. Inst. Acoust. 16, 223–230
    1. Hukin R. W., Darwin C. J. (1995). Comparison of the effect of onset asynchrony on auditory grouping in pitch matching and vowel identification. Percept. Psychophys. 57, 191–19610.3758/BF03206505
    1. Huss M., Verney J. P., Fosker T., Mead N., Goswami U. (2011). Music, rhythm, rise time perception and developmental dyslexia: perception of musical meter predicts reading and phonology. Cortex 47, 674–68910.1016/j.cortex.2010.07.010
    1. James D. K., Spencer C. J., Stepsis B. W. (2002). Fetal learning: a prospective randomized controlled study. Ultrasound Obstet. Gynecol. 20, 431–43810.1046/j.1469-0705.2002.00845.x
    1. Jentschke S., Koelsch S., Sallat S., Friederici A. D. (2008). Children with specific language impairment also show impairment of music-syntactic processing. J. Cogn. Neurosci. 20, 1940–195110.1162/jocn.2008.20135
    1. Johnson M. H. (2011). Interactive specialization: a domain-general framework for human functional brain development? Dev. Cogn. Neurosci. 1, 7–2110.1016/j.dcn.2011.05.008
    1. Johnson S. (2010). Neoconstructivism: The New Science of Cognitive Development. New York: Oxford University Press
    1. Jones J. L., Lucker J., Zalewski C., Brewer C., Drayna D. (2009). Phonological processing in adults with deficits in musical pitch recognition. J. Commun. Disord. 42, 226–23410.1016/j.jcomdis.2009.01.001
    1. Jusczyk P. (2000). The Discovery of Spoken Language. Cambridge, MA: MIT Press
    1. Jusczyk P. W., Hohne E. A., Bauman A. (1999). Infants’ sensitivity to allophonic cues to word segmentation. Percept. Psychophys. 61, 1465–147610.3758/BF03213111
    1. Juslin P. N., Laukka P. (2003). Communication of emotions in vocal expression and music performance: different channels, same code? Psychol. Bull. 129, 770–81410.1037/0033-2909.129.5.770
    1. Juslin P. N., Sloboda J. A. (2010). Handbook of Music and Emotion: Theory, Research, Applications. Oxford: Oxford University Press
    1. Juslin P. N., Västfjäll D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31, 559–575; discussion 575–621.10.1017/S0140525X08005293
    1. Karmiloff-Smith A. (1995). Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press
    1. Knudsen T. (1968). Ornamental hymn/psalm singing in Denmark, the Faroe Islands and the Hebrides. DFS Inf. 68, 5–22
    1. Koelsch S., Grossmann T., Gunter T. C., Hahne A., Schröger E., Friederici A. D. (2003). Children processing music: electric brain responses reveal musical competence and gender differences. J. Cogn. Neurosci. 15, 683–69310.1162/jocn.2003.15.5.683
    1. Kotilahti K., Nissilä I., Näsi T., Lipiäinen L., Noponen T., Meriläinen P., Huotilainen M., Fellman V. (2010). Hemodynamic responses to speech and music in newborn infants. Hum. Brain Mapp. 31, 595–603
    1. Kramer J. D. (1978). Moment form in twentieth century music. Musical Q. 64, 177–19410.1093/mq/LXIV.2.177
    1. Kraus N., Chandrasekaran B. (2010). Music training for the development of auditory skills. Nat. Rev. Neurosci. 11, 599–60510.1038/nrm2968
    1. Kreutzer N. (2001). Acquisition among from rural Shona-speaking Zimbabwean children from birth to 7 years. J. Res. Music Educ. 49, 198–21110.2307/3345706
    1. Kuhl P. K. (2004). Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5, 831–84310.1038/nrn1533
    1. Kuhl P. K. (2010). Brain mechanisms in early language acquisition. Neuron 67, 713–72710.1016/j.neuron.2010.08.038
    1. Kuhl P. K., Andruski J. E., Chistovich I., Chistovich L. A., Kozhevnikova E. V., Ryskina V. L., Stolyarova E. I., Sundberg U., Lacerda F. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science 277, 684–68610.1126/science.277.5326.684
    1. Kuhl P. K., Williams K., Lacerda F., Stevens K., Lindblom B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255, 606–60810.1126/science.1736364
    1. Kyoto Imperial Court Music Orchestra. (1993). Gagaku: The Imperial Court Music of Japan. Kyoto: Lyrichord Discs Inc
    1. Lamb S. J., Gregory A. H. (1993). The relationship between music and reading in beginning readers. Educ. Psychol. 13, 19–2710.1080/0144341930130103
    1. Language. (2012a). . Available at: [accessed July 2012].
    1. Language. (2012b). . Available at: [accessed July 2012].
    1. Lee C.-Y., Hung T.-H. (2008). Identification of Mandarin tones by English-speaking musicians and nonmusicians. J. Acoust. Soc. Am. 124, 3235–324810.1121/1.3020541
    1. Leppänen P. H. T., Hämäläinen J. A., Guttorm T. K., Eklund K. M., Salminen H., Tanskanen A., Torppa M., Puolakanaho A., Richardson U., Pennala R., Lyytinen H. (2011). Infant brain responses associated with reading-related skills before school and at schoolage. Clin. Neurophysiol. 42, 35–41
    1. Leppänen P. H. T., Paavo H. T., Hämäläinen J. A., Salminen H. K., Eklund K. M., Guttorm T. K., Lohvansuu K., Puolakanaho A., Lyytinen H. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex 46, 1362–137610.1016/j.cortex.2010.06.003
    1. Lieneff E. (1958). Folk Songs of the Ukraine. Godfrey, IL: Monticello College Press
    1. Lima C. F., Castro S. L. (2011). Speaking to the trained ear: musical expertise enhances the recognition of emotions in speech prosody. Emotion 11, 1021–103110.1037/a0024521
    1. Liu F., Patel A. D., Fourcin A., Stewart L. (2010). Intonation processing in congenital amusia: discrimination, identification and imitation. Brain 133, 1682–169310.1093/brain/awq089
    1. Luria A. R., Tsvetkova L. S., Futer D. S. (1965). Aphasia in a composer. J. Neurol. Sci. 2, 288–29210.1016/0022-510X(65)90113-9
    1. Lynch M. P., Eilers R. E. (1992). A study of perceptual development for musical tuning. Percept. Psychophys. 52, 599–60810.3758/BF03211696
    1. Lynch M. P., Eilers R. E., Kimbrough Oller D., Urbano R. C. (1990). Innateness, experience, and music perception. Psychol. Sci. 1, 272–27610.1111/j.1467-9280.1990.tb00213.x
    1. Maddieson I. (1984). Patterns of Sounds. Cambridge, MA: Cambridge University Press
    1. Magne C., Schon D., Besson M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J. Cogn. Neurosci. 18, 199–21110.1162/jocn.2006.18.2.199
    1. Marie C., Magne C., Besson M. (2011). Musicians and the metric structure of words. J. Cogn. Neurosci. 23, 294–30510.1162/jocn.2010.21585
    1. Markoff I. (1975). Two-part singing from the Razlog district of southwestern Bulgaria. Yearbook Int. Folk Music Council 7, 134–14410.2307/767595
    1. Marques C., Moreno S., Castro S. L., Besson M. (2007). Musicians detect pitch violation in a foreign language better than non-musicians: behavioural and electrophysiological evidence. J. Cogn. Neurosci. 19, 1453–146310.1162/jocn.2007.19.9.1453
    1. Masataka N. (1996). Perception of motherese in a signed language by 6-month-old deaf infants. Dev. Psychol. 32, 874–87910.1037/0012-1649.32.5.874
    1. Masataka N. (1999). Preference for infant-directed singing in 2-day-old hearing infants of deaf parents. Dev. Psychol. 35, 1001–100510.1037/0012-1649.35.4.1001
    1. Mattys S., Jusczyk P. W. (2001). Do infants segment words or recurring contiguous patterns? J. Exp. Psychol. Hum. Percept. Perform. 27, 644–65510.1037/0096-1523.27.3.644
    1. Maye J., Werker J. F., Gerken L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition 82, B101–B11110.1016/S0010-0277(01)00157-3
    1. McAdams S., Bertoncini J. (1997). Organization and discrimination of repeating sound sequences by newborn infants. J. Acoust. Soc. Am. 102, 2945–295310.1121/1.420349
    1. McAllester D. P. (1971). Some thoughts on “universals” in world music. Ethnomusicology 15, 379–38010.2307/850404
    1. McArthur G. (2009). Auditory processing disorders: can they be treated? Curr. Opin. Neurol. 22, 137–14310.1097/WCO.0b013e328326f6b1
    1. McClave E. (1994). Gestural beats: the rhythm hypothesis. J. Psycholinguist. Res. 23, 45–6610.1007/BF02143175
    1. McGettigan C., Scott S. K. (2012). Cortical asymmetries in speech perception: what’s wrong, what’s right and what’s left? Trends Cogn. Sci. (Regul. Ed.) 16, 269–27610.1016/j.tics.2012.04.006
    1. McGilchrist I. (2009). The Master and his Emissary: The Divided Brain and the Making of the Western World. New Haven, CT: Yale University Press
    1. McMullen E., Saffran J. R. (2004). Music and language: a developmental comparison. Music Percept. 21, 289–31110.1525/mp.2004.21.3.289
    1. Mehler J., Bertoncini J., Barriere M., Gerschenfeld D. J. (1978). Infant recognition of mother’s voice. Perception 7, 491–49710.1068/p070491
    1. Mehler J., Jusczyk P., Lamsertz G. (1988). A precursor of language acquisition in young infants. Cognition 29, 143–17810.1016/0010-0277(88)90035-2
    1. Mendez M. F. (2001). Generalized auditory agnosia with spared music recognition in a left-hander. Analysis of a case with a right temporal stroke. Cortex 37, 139–15010.1016/S0010-9452(08)70592-6
    1. Merrill J., Sammler D., Bangert M., Goldhahn D., Lohmann G., Turner R., Friederici A. D. (2012). Perception of words and pitch patterns in song and speech. Front. Psychol. 3:76.10.3389/fpsyg.2012.00076
    1. Merzenich M., Jenkins W., Johnston P., Schreiner C., Miller S., Tallal P. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271, 77–8110.1126/science.271.5245.77
    1. Mithen S. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. Cambridge, MA: Harvard University Press
    1. Molfese D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain Lang. 72, 238–24510.1006/brln.2000.2287
    1. Moog H. (1976). The Musical Experience of the Pre-School Child, trans. Clarke C. London: Schott
    1. Moon C., Cooper R. P., Fifer W. P. (1993). Two-day-olds prefer their native language. Infant Behav. Dev. 16, 495–50010.1016/0163-6383(93)80007-U
    1. Moran J. (2006). Artist-in-Residence. New York: Blue Note Records
    1. Moreno S., Marques C., Santos A., Santos M., Castro S. L., Besson M. (2009). Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex 19, 712–72310.1093/cercor/bhn120
    1. Morillon B., Lehongre K., Frackowiak R. S. S., Ducorps A., Kleinschmidt A., Poeppel D., Giraud A.-L. (2010). Neurophysiological origin of human brain asymmetry for speech and language. Proc. Natl. Acad. Sci. U.S.A. 107, 18688–1869310.1073/pnas.1007189107
    1. Muneaux M., Ziegler J. C., Truc C., Thomson J., Goswami U. (2004). Deficits in beat perception and dyslexia: evidence from French. Neuroreport 15, 1255–125910.1097/01.wnr.0000127459.31232.c4
    1. Musacchia G., Sams M., Skoe E., Kraus N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. U.S.A. 104, 15894–1589810.1073/pnas.0701498104
    1. Nazzi T., Bertoncini J., Mehler J. (1998). Language discrimination by newborns: toward an understanding of the role of rhythm. J. Exp. Psychol. Hum. Percept. Perform. 24, 756–76610.1037/0096-1523.24.3.756
    1. Nespor M., Shukla M., van deVijver R., Avesani C., Schraudolf H., Donati C. (2008). Different phrasal prominence realization in VO and OV languages. Lingue e Linguaggio. 7, 1–28
    1. Newham P. (1995. –1996). Making a song and dance: the musical voice of language. J. Imag. Lang. Learn. Teaching 111 Available at: [accessed May 10, 2012].
    1. Nuñez S. C., Dapretto M., Katzir T., Starr A., Bramen J., Kan E., Bookheimer S., Sowell E. R. (2011). fMRI of syntactic processing in typically developing children: structural correlates in the inferior frontal gyrus. Dev. Cogn. Neurosci. 1, 313–32310.1016/j.dcn.2011.02.004
    1. Overy K. (2000). Dyslexia, temporal processing and music: the potential of music as an early learning aid for dyslexic children. Psychol. Music 28, 218–22910.1177/0305735600282010
    1. Overy K., Nicolson R. I., Fawcett A. J., Clarke E. F. (2003). Dyslexia and music: measuring musical timing skills. Dyslexia 9, 18–3610.1002/dys.233
    1. Panksepp J. (2009). The emotional antecedents to the evolution of music and language. Music. Sci. 13, 229–25910.1177/1029864909013002111
    1. Pannekamp A., Weber C., Friederici A. D. (2006). Prosodic processing at the sentence level in infants. Neuroreport 17, 675–67810.1097/00001756-200604240-00024
    1. Parbery-Clark A., Skoe E., Kraus N. (2009). Musical experience limits the degradative effects of background noise on the neural processing of sound. J. Neurosci. 29, 14100–1410710.1523/JNEUROSCI.3256-09.2009
    1. Parbery-Clark A., Strait D. L., Anderson S., Hittner E., Kraus N. (2011). Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE 6, e18082.10.1371/journal.pone.0018082
    1. Pascalis O., de Haan M., Nelson C. A. (2002). Is face processing species-specific during the first year of life? Science 296, 1321–132310.1126/science.1070223
    1. Patel A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2:142.10.3389/fpsyg.2011.00142
    1. Patel A. D., Iversen J. R., Wassenaar M., Hagoort P. (2008). Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology 22, 776–78910.1080/02687030701803804
    1. Perani D., Saccuman M. C., Scifo P., Anwander A., Spada D., Baldoli C., Poloniato A., Lohmann G., Friederici A. D. (2011). Neural language networks at birth. Proc. Natl. Acad. Sci. U.S.A. 108, 16056–1606110.1073/pnas.1102991108
    1. Perani D., Saccumann M. C., Scifo P., Spada D., Andreolli G., Rovelli R., Baldoli C., Koelsch S. (2010). Functional specializations for music processing in the human newborn brain. Proc. Natl. Acad. Sci. U.S.A. 107, 4758–476310.1073/pnas.0909074107
    1. Peretz I. (2006). The nature of music from a biological perspective. Cognition 100, 1–3210.1016/j.cognition.2005.11.004
    1. Peretz I., Coltheart M. (2003). Modularity of music processing. Nat. Neurosci. 6, 688–69110.1038/nn1083
    1. Peretz I., Saffran J., Schön D., Gosselin N. (2012). Statistical learning of speech, not music, in congenital amusia. Ann. N. Y. Acad. Sci. 1252, 361–36610.1111/j.1749-6632.2011.06429.x
    1. Perruchet P., Pacton S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends Cogn. Sci. (Regul. Ed.) 10, 233–23810.1016/j.tics.2006.03.006
    1. Petitto L., Marentette P. (1991). Babbling in the manual mode: evidence for the ontogeny of language. Science 251, 1493–149610.1126/science.2006424
    1. Petrov S., Manolova M., Buchanan D. A. (2011). Bulgaria. II. Traditional Music. Grove Music Online. Available at: [accessed May 24, 2010].
    1. Pinker S. (1997). How the Mind Works. New York, NY: W. W. Norton and Company, Inc
    1. Polka L., Werker J. F. (1994). Developmental changes in perception of nonnative vowel contrasts. J. Exp. Psychol. Hum. Percept. Perform. 20, 421–43510.1037/0096-1523.20.2.421
    1. Racy A. J. (2004). Making Music in the Arab World: The Culture and Artistry of ṭarab. Cambridge: Cambridge University Press
    1. Ramus F., Mehler J. (1999). Language identification with suprasegmental cues: study based on speech resynthesis. J. Acoust. Soc. Am. 105, 512–52110.1121/1.424522
    1. Ramus F., Nespor M., Mehler J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition 73, 265–29210.1016/S0010-0277(99)00058-X
    1. Reinhard K., Stokes M., Reinhard U. (2001). Turkey. II. Folk Music. Grove Music Online. Available at: [accessed May 24, 2012].
    1. Remez R., Rubin P., Pisoni D., Carrell T. (1981). Speech perception without traditional speech cues. Science 212, 947–95010.1126/science.7233191
    1. Rivera-Gaxiola M., Klarman L., Garcia-Sierra A., Kuhl P. K. (2005). Neural patterns to speech and vocabulary growth in American infants. Neuroreport 16, 495–49810.1097/00001756-200504040-00015
    1. Robinson K., Patterson R. D. (1995). The duration required to identify the instrument, the octave, or the pitch chroma of a musical note. Music Percept. 13, 1–14
    1. Romberg A., Saffran J. R. (2010). Statistical learning and language acquisition. Wiley Interdiscip. Rev. Cogn. Sci. 1, 906–91410.1002/wcs.78
    1. Rosen S. (1992). Temporal information in speech: acoustic, auditory and linguistic aspects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 336, 367–37310.1098/rstb.1992.0070
    1. Rossi B. (1998). Jewish Folksongs. Udine: Pizzicato Editione Musicale.
    1. Sadakata M., Sekiyama K. (2011). Enhanced perception of various linguistic features by musicians: a cross-linguistic study. Acta Psychol. (Amst.) 138, 1–1010.1016/j.actpsy.2011.03.007
    1. Saffran J. R., Aslin R. N., Newport E. L. (1996). Statistical learning by 8-month-old infants. Science 274, 1926–192810.1126/science.274.5294.1926
    1. Saffran J. R., Johnson E. K., Aslin R. N., Newport E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition 70, 27–5210.1016/S0010-0277(98)00075-4
    1. Sam S.-A. (1998). “The Khmer people,” in The Garland Encyclopedia of World Music, eds Miller T. E., Williams S. (New York: Garland Publishing; ), 151–217
    1. Sansavini A., Bertoncini J., Giovanelli G. (1997). Newborns discriminate the rhythm of multisyllabic stressed words. Dev. Psychol. 33, 3–1110.1037/0012-1649.33.1.3
    1. Schellenberg E. G., Trainor L. J. (1996). Sensory consonance and the perceptual similarity of complex-tone harmonic intervals: tests of adult and infant listeners. J. Acoust. Soc. Am. 100, 3321–332810.1121/1.417355
    1. Schlaug G., Forgeard M., Zhu L., Norton A., Norton A., Winner E. (2009a). Training-induced neuroplasticity in young children. Ann. N. Y. Acad. Sci. 1169, 205–20810.1111/j.1749-6632.2009.04587.x
    1. Schlaug G., Marchina S., Norton A. (2009b). Evidence for plasticity in white matter tracts of chronic aphasic patients undergoing intense intonation-based speech therapy. Ann. N. Y. Acad. Sci. 1169, 385–39410.1111/j.1749-6632.2009.04587.x
    1. Schön D., Gordon R. L., Campagne A., Magne C., Astésano C., Anton J.-L., Besson M. (2010). Similar cerebral networks in language, music and song perception. Neuroimage 51, 450–46110.1016/j.neuroimage.2010.02.023
    1. Schön D., Magne C., Besson M. (2004). The music of speech: music facilitates pitch processing in language. Psychophysiology 41, 341–34910.1111/1469-8986.00172.x
    1. Scott C. (2004). “Syntactic ability in children and adolescents with language and learning disabilities,” in Language Development Across Childhood and Adolescence, ed. Berman R. A. (Amsterdam: John Benjamins Publishing Company; ), 111–134
    1. Scott L. S., Pascalis O., Nelson C. A. (2007). A domain-general theory of the development of perceptual discrimination. Curr. Dir. Psychol. Sci. 16, 197–20110.1111/j.1467-8721.2007.00503.x
    1. Shannon R. V., Zeng F. G., Kamath V., Wygonski J., Ekelid M. (1995). Speech recognition with primarily temporal cues. Science 270, 303–30410.1126/science.270.5234.303
    1. Shepard R. (1980). Multidimensional scaling, tree-fitting, and clustering. Science 210, 390–39810.1126/science.210.4468.390
    1. Shi R., Werker J. F., Morgan J. L. (1999). Newborn infants’ sensitivity to perceptual cues to lexical and grammatical words. Cognition 72, B11–B2110.1016/S0010-0277(99)00047-5
    1. Siikala A.-L. (2000). Body, performance and agency in Kalevala rune-singing. Oral Tradit. 15, 255–278
    1. Slevc L. R. (2012). Language and music: sound, structure, and meaning. Wiley Interdiscip. Rev. Cogn. Sci. 3, 483–49210.1002/wcs.1186
    1. Slevc L. R., Martin R. C., Hamilton A. C., Joanisse M. F. (2011). Speech perception, rapid temporal processing, and the left hemisphere: a case study of unilateral pure word deafness. Neuropsychologia 49, 216–23010.1016/j.neuropsychologia.2010.11.009
    1. Slevc L. R., Miyake A. (2006). Individual differences in second language proficiency: does musical ability matter? Psychol. Sci. 17, 675–68110.1111/j.1467-9280.2006.01765.x
    1. Slonimsky N. (1965). Lexicon of Musical Invective: Critical Assaults on Composers Since Beethoven’s Time. New York, NY: Coleman-Ross Co
    1. Soley G., Hannon E. E. (2010). Infants prefer the musical meter of their own culture: a cross-cultural comparison. Dev. Psychol. 46, 286–29210.1037/a0017555
    1. Speer J. R., Meeks P. U. (1985). School children’s perception of pitch in music. Psychomusicology 5, 49–5610.1037/h0094200
    1. Stepanek J., Otcenasek Z. (2005). “Acoustical correlates of the main features of violin timbre perception,” in Proceedings of the Conference on Interdisciplinary Musicology, Nara, 1–9
    1. Strait D., Kraus N. (2011). Playing music for a smarter ear: cognitive, perceptual and neurobiological evidence. Music Percept. 29, 133–14610.1525/mp.2011.29.2.133
    1. Surányi Z., Csépe V., Richardson U., Thomson J. M., Honbolygó F., Goswami U. (2009). Sensitivity to rhythmic parameters in dyslexic children: a comparison of Hungarian and English. Reading Writing 22, 41–5610.1007/s11145-007-9102-x
    1. Tallal P., Gaab N. (2006). Dynamic auditory processing, musical experience and language development. Trends Neurosci. 29, 382–39010.1016/j.tins.2006.06.003
    1. Tallal P., Piercy M. (1973). Defects of non-verbal auditory perception in children with developmental aphasia. Nature 241, 468–46910.1038/241468a0
    1. Tarnopolsky A., Fletcher N., Hollenberg L., Lange B., Smith J., Wolfe J. (2005). Acoustics: the vocal tract and the sound of a didgeridoo. Nature 436, 39.10.1038/43639b
    1. Telkemeyer S., Rossi S., Koch S. P., Nierhaus T., Steinbrink J., Poeppel D., Obrig H., Wartenburger I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. J. Neurosci. 29, 14726–1473310.1523/JNEUROSCI.1246-09.2009
    1. Tenzer M. (1991). Balinese Music. Seattle, WA: University of Washington Press
    1. Thiessen E. D., Hill E. A., Saffran J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy 7, 53–7110.1207/s15327078in0701_5
    1. Thompson W. F., Schellenberg E. G., Husain G. (2004). Decoding speech prosody: do music lessons help? Emotion 4, 46–6410.1037/1528-3542.4.1.46
    1. Tierney A., Dick F., Deutsch D., Sereno M. (in press). Speech versus song: multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. Cereb. Cortex.
    1. Tillmann B., McAdams S. (2004). Implicit learning of musical timbre sequences: statistical regularities confronted with acoustical (dis)similarities. J. Exp. Psychol. Learn Mem. Cogn. 30, 1131–114210.1037/0278-7393.30.5.1131
    1. Tokita A. M., Hughes D. W. (eds). (2008). “Context and change in Japanese music,” in The Ashgate Research Companion to Japanese Music (Aldershot: Ashgate Publishing Limited; ), 1–34
    1. Trainor L. J., Austin C. M., Desjardins N. (2000). Is infant-directed speech a result of the vocal expression of emotion? Psychol. Sci. 11, 188–19510.1111/1467-9280.00240
    1. Trainor L. J., Corrigall K. A. (2010). “Music acquisition and effects of musical experience,” in Music Perception, Vol. 36, eds Riess Jones M., Fay R. R., Popper A. N. (New York, NY: Springer; ), 89–127
    1. Trainor L. J., Trehub S. E. (1994). Key membership and implied harmony in Western tonal music: developmental perspectives. Percept. Psychophys. 56, 125–13210.3758/BF03213891
    1. Trehub S. E. (2003). The developmental origins of musicality. Nat. Neurosci. 6, 669–67310.1038/nn1084
    1. Trehub S. E., Cohen A., Thorpe L., Morrongiello B. (1986). Development of the perception of musical relations: semitone and diatonic structure. J. Exp. Psychol. Hum. Percept. Perform. 12, 295–30110.1037/0096-1523.12.3.295
    1. Trehub S. E., Thorpe L. A. (1989). Infants’ perception of rhythm: categorization of auditory sequences by temporal structure. Can. J. Psychol. 43, 217–22910.1037/h0084223
    1. Trehub S. E., Trainor L. (1993). “Listening strategies in infancy: the roots of language and musical development,” in Cognitive Aspects of Human Audition, eds McAdams S., Bigand E. (London: Oxford University Press; ), 278–327
    1. Trehub S. E., Trainor L. (1998). “Singing to infants: babies and play songs,” in Advances in Infancy Research, Vol. 12, eds Lipsitt L. P., Rovee-Collier C. K., Hayne H. (Stamford, CT: Albex Publishing Corp; ), 43–77
    1. Trehub S. E., Unyk A. M., Trainor L. J. (1993). Maternal singing in cross-cultural perspective. Infant Behav. Dev. 16, 285–29510.1016/0163-6383(93)80036-8
    1. Tuva. (1990). Tuva: Voices from the Center of Asia. Cambridge, MA: Smithsonian Folkways Recordings, distributed by Rounder Records
    1. Tzortzis C., Goldblum M. C., Dang M., Forette F., Boller F. (2000). Absence of amusia and preserved naming of musical instruments in an aphasic composer. Cortex 36, 227–24210.1016/S0010-9452(08)70526-4
    1. von Hornbostel E. M. (1933). The ethnology of African sound-instruments. Africa (Lond.) 6, 277–311
    1. Vouloumanos A., Werker J. F. (2007). Listening to language at birth: evidence for a bias for speech in neonates. Dev. Sci. 10, 159–16410.1111/j.1467-7687.2007.00551.x
    1. Weissenborn J., Höhle B., Kiefer D., Cavar D. (1996). “Children’s sensitivity to word-order violations in German: evidence for very early parameter-setting,” in Proceedings of the 22nd Annual. Boston University Conference on Language Development, Boston, MA, 756–777
    1. Welch G. F. (2002). “Early childhood musical development,” in The Arts in Children’s Lives: Context, Culture and Curriculum, eds Bresler L., Thompson C., (Dordrecht, NL: Kluwer; ), 113–128
    1. Welch G. F. (2009). Evidence of the development of vocal pitch matching ability in children. Jap. J Music Educ. Res. 21, 1–1310.1080/14613800802699523
    1. Werker J., McLeod P. (1989). Infant preference for both male and female infant-directed talk: a developmental study of attentional and affective responsiveness. Can. J. Psychol. Rev. 43, 230–24610.1037/h0084224
    1. Werker J. F., Tees R. (1984). Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant Behav. Dev. 7, 49–6310.1016/S0163-6383(84)80022-3
    1. Wermke K., Leising D., Stellzig-Eisenhauer A. (2007). Relation of melody complexity in infants’ cries to language outcome in the second year of life: a longitudinal study. Clin. Linguist. Phon. 21, 961–97310.1080/02699200701659243
    1. Wermke K., Mende W. (2009). Musical elements in human infants’ cries: in the beginning is the melody. Music. Sci. 13, 151–17510.1177/1029864909013002081
    1. Werner L. A., Marean G. C. (1996). Human Auditory Development. Madison, WI: Brown Benchmark
    1. Wilson E. O. (2012). The Social Conquest of the Earth. New York, NY: Liveright Publishers
    1. Wong P. C. M., Skoe E., Russo N. M., Dees T., Kraus N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 10, 420–422
    1. Zatorre R. J., Belin P., Penhune V. B. (2002). Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. (Regul. Ed.) 6, 37–4610.1016/S1364-6613(00)01816-7
    1. Zbikowski L. (2008). “Metaphor and music,” in The Cambridge Handbook of Metaphor and Thought, ed. Gibbs R. W., Jr. (Cambridge: Cambridge University Press; ), 502–524

Source: PubMed

3
S'abonner