Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial

Jesús Castro-Marrero, Maria Jose Segundo, Marcos Lacasa, Alba Martinez-Martinez, Ramon Sanmartin Sentañes, Jose Alegre-Martin, Jesús Castro-Marrero, Maria Jose Segundo, Marcos Lacasa, Alba Martinez-Martinez, Ramon Sanmartin Sentañes, Jose Alegre-Martin

Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multisystem, and profoundly debilitating neuroimmune disease, probably of post-viral multifactorial etiology. Unfortunately, no accurate diagnostic or laboratory tests have been established, nor are any universally effective approved drugs currently available for its treatment. This study aimed to examine whether oral coenzyme Q10 and NADH (reduced form of nicotinamide adenine dinucleotide) co-supplementation could improve perceived fatigue, unrefreshing sleep, and health-related quality of life in ME/CFS patients. A 12-week prospective, randomized, double-blind, placebo-controlled trial was conducted in 207 patients with ME/CFS, who were randomly allocated to one of two groups to receive either 200 mg of CoQ10 and 20 mg of NADH (n = 104) or matching placebo (n = 103) once daily. Endpoints were simultaneously evaluated at baseline, and then reassessed at 4- and 8-week treatment visits and four weeks after treatment cessation, using validated patient-reported outcome measures. A significant reduction in cognitive fatigue perception and overall FIS-40 score (p < 0.001 and p = 0.022, respectively) and an improvement in HRQoL (health-related quality of life (SF-36)) (p < 0.05) from baseline were observed within the experimental group over time. Statistically significant differences were also shown for sleep duration at 4 weeks and habitual sleep efficiency at 8 weeks in follow-up visits from baseline within the experimental group (p = 0.018 and p = 0.038, respectively). Overall, these findings support the use of CoQ10 plus NADH supplementation as a potentially safe therapeutic option for reducing perceived cognitive fatigue and improving the health-related quality of life in ME/CFS patients. Future interventions are needed to corroborate these clinical benefits and also explore the underlying pathomechanisms of CoQ10 and NADH administration in ME/CFS.

Keywords: NADH; chronic fatigue syndrome; coenzyme Q10; mitochondria; myalgic encephalomyelitis; nonrestorative sleep; quality of life.

Conflict of interest statement

M.J.S. is an employee of Vitae Health Innovation, S.L. (Montmeló, Barcelona, Spain). As stated in the author contributions, the funders declare that they had no role in the design, execution, analysis and interpretation, and presentation of data. J.C.-M. received financial support from Vitae Health Innovation, S.L. to conduct this intervention study. The rest of the authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Consolidated Standards of Reporting Trials (CONSORT) flow diagram illustrating the steps of screening, enrollment, assignment, and follow-up of the study participants.
Figure 2
Figure 2
Summary of the study schedule at each visit during the clinical trial.

References

    1. Morris G., Puri B.K., Walker A., Maes M., Carvalho A.F., Walder K., Mazza C., Berk M. Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol. Res. 2019;148:104450. doi: 10.1016/j.phrs.2019.104450.
    1. Lim E.-J., Ahn Y.-C., Jang E.-S., Lee S.-W., Lee S.-H., Son C.-G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) J. Transl. Med. 2020;18:100. doi: 10.1186/s12967-020-02269-0.
    1. Castro-Marrero J., Faro M., Zaragozá M.C., Aliste L., De Sevilla T.F., Alegre J. Unemployment and work disability in individuals with chronic fatigue syndrome/myalgic encephalomyelitis: A community-based cross-sectional study from Spain. BMC Public Health. 2019;19:1–13. doi: 10.1186/s12889-019-7225-z.
    1. Fukuda K., Straus S.E., Hickie I., Sharpe M.C., Dobbins J.G., Komaroff A. The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. Ann. Intern. Med. 1994;121:953–959. doi: 10.7326/0003-4819-121-12-199412150-00009.
    1. Carruthers B.M., Jain A.K., De Meirleir K.L., Peterson D.L., Klimas N.G., Lerner A.M., Bested A.C., Flor-Henry P., Joshi P., Powles A.C.P., et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Chronic Fatigue Syndr. 2003;11:7–115. doi: 10.1300/J092v11n01_02.
    1. Carruthers B.M., van de Sande M.I., de Meirleir K.L., Klimas N.G., Broderick G., Mitchell T., Staines D., Powles A.C.P., Speight N., Vallings R., et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011;270:327–338. doi: 10.1111/j.1365-2796.2011.02428.x.
    1. Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Board on the Health of Select Populations. Institute of Medicine . Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. National Academies Press; Washington, DC, USA: 2015.
    1. Fisk J.D., Ritvo P.G., Ross L., Haase D.A., Marrie T.J., Schlech W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994;18:S79–S83. doi: 10.1093/clinids/18.Supplement_1.S79.
    1. Buysse D.J., Reynolds C.F., III, Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Alonso J., Prieto L., Antó J.M. La versión española del SF-36 Health Survey (Cuestionario de Salud SF-36): Un instrumento para la medida de los resultados clínicos. Med. Clin. 1995;104:771–776.
    1. Castro-Marrero J., Saez-Francàs N., Santillo D., Alegre J. Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: All roads lead to Rome. Br. J. Pharmacol. 2017;174:345–369. doi: 10.1111/bph.13702.
    1. Anderson G., Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2020;103:109976. doi: 10.1016/j.pnpbp.2020.109976.
    1. Filler K., Lyon D., Bennett J., McCain N., Elswick R., Lukkahatai N., Saligan L.N. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014;1:12–23. doi: 10.1016/j.bbacli.2014.04.001.
    1. Hargreaves I., Heaton R.A., Mantle D. Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int. J. Mol. Sci. 2020;21:6695. doi: 10.3390/ijms21186695.
    1. Bjørklund G., Dadar M., Pen J.J., Chirumbolo S., Aaseth J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed. Pharmacother. 2019;109:1000–1007. doi: 10.1016/j.biopha.2018.10.076.
    1. Campagnolo N., Johnston S., Collatz A., Staines D., Marshall-Gradisnik S. Dietary and nutrition interventions for the therapeutic treatment of chronic fatigue syndrome/myalgic encephalomyelitis: A systematic review. J. Hum. Nutr. Diet. 2017;30:247–259. doi: 10.1111/jhn.12435.
    1. Maksoud R., Balinas C., Holden S., Cabanas H., Staines D., Marshall-Gradisnik S. A systematic review of nutraceutical interventions for mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome. J. Transl. Med. 2021;19:1–11. doi: 10.1186/s12967-021-02742-4.
    1. Arenas-Jal M., Suñé-Negre J.M., García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020;19:574–594. doi: 10.1111/1541-4337.12539.
    1. Testai L., Martelli A., Flori L., Cicero A., Colletti A. Coenzyme Q10: Clinical Applications beyond Cardiovascular Diseases. Nutrients. 2021;13:1697. doi: 10.3390/nu13051697.
    1. Chen H.-C., Huang C.-C., Lin T.-J., Hsu M.-C., Hsu Y.-J. Ubiquinol Supplementation Alters Exercise Induced Fatigue by Increasing Lipid Utilization in Mice. Nutrients. 2019;11:2550. doi: 10.3390/nu11112550.
    1. Shimizu K., Kon M., Tanimura Y., Hanaoka Y., Kimura F., Akama T., Kono I. Coenzyme Q10 supplementation downregulates the increase of monocytes expressing toll-like receptor 4 in response to 6-day intensive training in kendo athletes. Appl. Physiol. Nutr. Metab. 2015;40:575–581. doi: 10.1139/apnm-2014-0556.
    1. Fukuda S., Koyama H., Kondo K., Fujii H., Hirayama Y., Tabata T., Okamura M., Yamakawa T., Okada S., Hirata S., et al. Effects of Nutritional Supplementation on Fatigue, and Autonomic and Immune Dysfunction in Patients with End-Stage Renal Disease: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. PLoS ONE. 2015;10:e0119578. doi: 10.1371/journal.pone.0119578.
    1. Mancuso M., Angelini C., Bertini E., Carelli V., Comi G., Minetti C., Moggio M., Mongini T., Servidei S., Tonin P., et al. Fatigue and exercise intolerance in mitochondrial diseases. Literature revision and experience of the Italian Network of mitochondrial diseases. Neuromuscul. Disord. 2012;22:S226–S229. doi: 10.1016/j.nmd.2012.10.012.
    1. Umanskaya A., Santulli G., Xie W., Andersson D., Reiken S.R., Marks A.R. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc. Natl. Acad. Sci. USA. 2014;111:15250–15255. doi: 10.1073/pnas.1412754111.
    1. Whitehead N.P., Kim M.J., Bible K.L., Adams M.E., Froehner S.C. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc. Natl. Acad. Sci. USA. 2015;112:12864–12869. doi: 10.1073/pnas.1509536112.
    1. Castro-Marrero J., Cordero M.D., Saez-Francàs N., Jimenez-Gutierrez C., Aguilar-Montilla F.J., Aliste L., Alegre J. Could Mitochondrial Dysfunction Be a Differentiating Marker Between Chronic Fatigue Syndrome and Fibromyalgia? Antioxidants Redox Signal. 2013;19:1855–1860. doi: 10.1089/ars.2013.5346.
    1. Castro-Marrero J., Cordero M.D., Segundo M.J., Saez-Francàs N., Calvo N., Román-Malo L., Aliste L., De Sevilla T.F., Alegre J. Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxidants Redox Signal. 2015;22:679–685. doi: 10.1089/ars.2014.6181.
    1. Castro-Marrero J., Saez-Francàs N., Segundo M.J., Calvo N., Faro M., Aliste L., de Sevilla T.F., Alegre J. Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome—A randomized, controlled, double-blind trial. Clin. Nutr. 2016;35:826–834. doi: 10.1016/j.clnu.2015.07.010.
    1. Tian G., Sawashita J., Kubo H., Nishio S.-Y., Hashimoto S., Suzuki N., Yoshimura H., Tsuruoka M., Wang Y., Liu Y., et al. Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal. 2014;20:2606–2620. doi: 10.1089/ars.2013.5406.
    1. Morris G., Anderson G., Berk M., Maes M. Coenzyme Q10 Depletion in Medical and Neuropsychiatric Disorders: Potential Repercussions and Therapeutic Implications. Mol. Neurobiol. 2013;48:883–903. doi: 10.1007/s12035-013-8477-8.
    1. Carmona M.C., Lefebvre P., Lefebvre B., Galinier A., Benani A., Jeanson Y., Louche K., Flajollet S., Ktorza A., Dacquet C., et al. Coadministration of coenzyme Q prevents rosiglitazone-induced adipogenesis in ob/ob mice. Int. J. Obesity. 2009;33:204–211. doi: 10.1038/ijo.2008.265.
    1. Lee S.K., Lee J.O., Kim J.H., Kim N., You G.Y., Moon J.W., Sha J., Kim S.J., Lee Y.W., Kang H.J., et al. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPAR-alpha induction in 3T3-L1 pre-adipocytes. Cell Signal. 2012;24:2329–2336. doi: 10.1016/j.cellsig.2012.07.022.
    1. Huo J., Xu Z., Hosoe K., Kubo H., Miyahara H., Dai J., Mori M., Sawashita J., Higuchi K. Coenzyme Q10 Prevents Senescence and Dysfunction Caused by Oxidative Stress in Vascular Endothelial Cells. Oxidative Med. Cell. Longev. 2018;2018:1–15. doi: 10.1155/2018/3181759.
    1. Tsai K.-L., Huang Y.-H., Kao C.-L., Yang D.-M., Lee H.-C., Chou H.-Y., Chen Y.-C., Chiou G.-Y., Chen L.-H., Yang Y.-P., et al. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. J. Nutr. Biochem. 2012;23:458–468. doi: 10.1016/j.jnutbio.2011.01.011.
    1. Akbari A., Mobini G.R., Agah S., Morvaridzadeh M., Omidi A., Potter E., Fazelian S., Ardehali S.H., Daneshzad E., Dehghani S. Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Eur. J. Clin. Pharmacol. 2020;76:1483–1499. doi: 10.1007/s00228-020-02919-8.
    1. Sangsefidi Z.S., Yaghoubi F., Hajiahmadi S., Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci. Nutr. 2020;8:1766–1776. doi: 10.1002/fsn3.1492.
    1. Lee B.-J., Tseng Y.-F., Yen C.-H., Lin P.-T. Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary artery disease patients during statins therapy: A randomized, placebo-controlled trial. Nutr. J. 2013;12:142. doi: 10.1186/1475-2891-12-142.
    1. Moccia M., Capacchione A., Lanzillo R., Carbone F., Micillo T., Perna F., De Rosa A., Carotenuto A., Albero R., Matarese G., et al. Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in interferon-β1a-treated multiple sclerosis. Ther. Adv. Neurol. Disord. 2019;12:1–12. doi: 10.1177/1756286418819074.
    1. Arenas-Jal M., Suñé-Negre J., García-Montoya E. Therapeutic potential of nicotinamide adenine dinucleotide (NAD) Eur. J. Pharmacol. 2020;879:173158. doi: 10.1016/j.ejphar.2020.173158.
    1. Santaella M.L., Font I., Disdier O.M. Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome. Puerto Rico Health Sci. J. 2004;23:89–93.
    1. Alegre J., Roses J.M., Javierre C., Ruiz Baques A., Segundo M.J., de Sevilla T.F. Nicotinamida adenina dinucleotido (NADH) en pacientes con síndrome de fatiga crónica. Rev. Clin. Esp. 2010;210:284–288. doi: 10.1016/j.rce.2009.09.015.
    1. Alcocer-Gómez E., Cano-García F.J., Cordero M.D. Effect of coenzyme Q10 evaluated by 1990 and 2010 ACR Diagnostic Criteria for Fibromyalgia and SCL-90-R: Four case reports and literature review. Nutrition. 2013;29:1422–1425. doi: 10.1016/j.nut.2013.05.005.
    1. Forsyth L.M., Preuss H.G., MacDowell A.L., Chiazze L., Birkmayer G.D., Bellanti J. Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann. Allergy Asthma Immunol. 1999;82:185–191. doi: 10.1016/S1081-1206(10)62595-1.
    1. Fukuda S., Nojima J., Kajimoto O., Yamaguti K., Nakatomi Y., Kuratsune H., Watanabe Y. Ubiquinol-10 supplementation improves autonomic nervous function and cognitive function in chronic fatigue syndrome. BioFactors. 2016;42:431–440. doi: 10.1002/biof.1293.
    1. Ostojic S.M., Stojanovic M., Drid P., Hoffman J.R., Sekulic D., Zenic N. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome. Nutrients. 2016;8:72. doi: 10.3390/nu8020072.
    1. Montoya J.G., Anderson J.N., Adolphs D.L., Bateman L., Klimas N., Levine S.M., Garvert D.W., Kaiser J.D. KPAX002 as a treatment for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A prospective, randomized trial. Int. J. Clin. Exp. Med. 2018;11:2890–2900.
    1. Vermeulen R.C.W., Scholte H.R. Exploratory open label, randomized study of acetyl and propionyl-carnitine in chronic fa-tigue syndrome. Psychosom. Med. 2004;66:276–282. doi: 10.1097/01.psy.0000116249.60477.e9.
    1. Menon R., Cribb L., Murphy J., Ashton M.M., Oliver G., Dowling N., Turner A., Dean O., Berk M., Ng C.H., et al. Mitochondrial modifying nutrients in treating chronic fatigue syndrome: A 16-week open-label pilot study. Adv. Integr. Med. 2017;4:109–114. doi: 10.1016/j.aimed.2017.11.001.
    1. Kaiser J.D. A prospective, proof-of-concept investigation of KPAX002 in chronic fatigue syndrome. Int. J. Clin. Exp. Med. 2015;8:11064–11074.
    1. Binukumar B.K., Gupta N., Sunkaria A., Kandimalla R., Wani W., Sharma D.R., Bal A., Gill K.D. Protective Efficacy of Coenzyme Q10 Against DDVP-Induced Cognitive Impairments and Neurodegeneration in Rats. Neurotox. Res. 2011;21:345–357. doi: 10.1007/s12640-011-9289-0.
    1. Dumont M., Kipiani K., Yu F., Wille E., Katz M., Calingasan N.Y., Gouras G.K., Lin M.T., Beal M.F. Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2011;27:211–223. doi: 10.3233/JAD-2011-110209.
    1. Sanoobar M., Eghtesadi S., Azimi A., Khalili M., Khodadadi B., Jazayeri S., Gohari M.R., Aryaeian N. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: A double blind, placebo, controlled randomized clinical trial. Nutr. Neurosci. 2015;18:169–176. doi: 10.1179/1476830513Y.0000000106.
    1. Sanoobar M., Dehghan P., Khalili M., Azimi A., Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutr. Neurosci. 2015;19:138–143. doi: 10.1179/1476830515Y.0000000002.
    1. Mehrabani S., Askari G., Miraghajani M., Tavakoly R., Arab A. Effect of coenzyme Q10 supplementation on fatigue: A systematic review of interventional studies. Complement. Ther. Med. 2019;43:181–187. doi: 10.1016/j.ctim.2019.01.022.
    1. Golomb B.A., Allison M., Koperski S., Koslik H.J., Devaraj S., Ritchie J.B. Coenzyme Q10 Benefits Symptoms in Gulf War Veterans: Results of a Randomized Double-Blind Study. Neural Comput. 2014;26:2594–2651. doi: 10.1162/NECO_a_00659.
    1. Sandler C.X., Lloyd A.R. Chronic fatigue syndrome: Progress and possibilities. Med. J. Aust. 2020;212:428–433. doi: 10.5694/mja2.50553.
    1. Castro-Marrero J., Zaragozá M.C., González-Garcia S., Aliste L., Saez-Francàs N., Romero O., Ferré A., De Sevilla T.F., Alegre J. Poor self-reported sleep quality and health-related quality of life in patients with chronic fatigue syndrome/myalgic encephalomyelitis. J. Sleep Res. 2018;27:e12703. doi: 10.1111/jsr.12703.
    1. Silaidos C., Pilatus U., Grewal R., Matura S., Lienerth B., Pantel J., Eckert G.P., Silaidos C., Pilatus U., Grewal R., et al. Sex-associated differences in mitochondrial function in human peripheral blood mononuclear cells (PBMCs) and brain. Biol. Sex Differ. 2018;9:1–10. doi: 10.1186/s13293-018-0193-7.
    1. Di Lorenzo A., Iannuzzo G., Parlato A., Cuomo G., Testa C., Coppola M., D’Ambrosio G., Oliviero D.A., Sarullo S., Vitale G., et al. Clinical Evidence for Q10 Coenzyme Supplementation in Heart Failure: From Energetics to Functional Improvement. J. Clin. Med. 2020;9:1266. doi: 10.3390/jcm9051266.
    1. Kawashima C., Matsuzawa Y., Konishi M., Akiyama E., Suzuki H., Sato R., Nakahashi H., Kikuchi S., Kimura Y., Maejima N., et al. Ubiquinol Improves Endothelial Function in Patients with Heart Failure with Reduced Ejection Fraction: A Single-Center, Randomized Double-Blind Placebo-Controlled Crossover Pilot Study. Am. J. Cardiovasc. Drugs. 2019;20:363–372. doi: 10.1007/s40256-019-00384-y.

Source: PubMed

3
S'abonner